Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (11): 59-65    DOI: 10.13523/j.cb.20181108
综述     
CRISPR/Cas系统作为抗菌药的现状及展望 *
曾家伟,侯国锋,郑继平,杨诺,曾纪峰,郭桂英()
海南大学热带农林学院 海口 570228
The Progress of CRISPR/Cas System Used As Antimicrobials
Jia-wei ZENG,Guo-feng HOU,Ji-ping ZHENG,Nou YANG,Ji-feng ZENG,Gui-ying GUO()
Hainan University,Tropical Agriculture and Forestry College,Haikou 570228,China
 全文: PDF(1040 KB)   HTML
摘要:

抗生素长期滥用导致了人体内菌群失调及细菌耐药性的产生,因此需要寻找新型、靶向抗菌方法来治疗耐药细菌的感染。近年来,CRISPR/Cas系统的深入研究为设计特异性靶向耐药基因,定向清除耐药细菌的药物提供了新的思路。在此介绍了CRISPR/Cas系统作为新型抗菌方法,通过靶向切割抗性质粒或细菌基因组以实现对耐药基因或病原菌的特异性清除,并对CRISPR抗菌药的不同类型核酸酶的选择,以及CRISPR递送系统的运载工具进行了评价。

关键词: 细菌耐药性特异性清除CRISPR/Cas运载工具    
Abstract:

Antibiotics are used to arrest essential bacterial signaling and/or metabolic pathways,causing bacterial cell death.Overuse and misuse of antibiotics have led to dysbacteriosis and drug resistance.The application of CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR associated) systems provides a new method to kill the drug-resistant microbes specifically by designing programmable sequence-specific antimicrobials.Currently,the most efficient CRISPR/Cas systems are type I and type II as a novel antimicrobial tool in selective removal of bacterial pathogens.Bacteriophage has been developed as a delivery vehicle,but the membrane vesicles had more potential for transporting the CRISPR/Cas systems into the targeted resistant pathogen.

Key words: Bacterial drug-resistance    Selective removal    CRISPR/Cas    Delivery vehicles
收稿日期: 2018-05-30 出版日期: 2018-12-06
ZTFLH:  Q522  
基金资助: * 国家自然科学基金(31460699);海南自然科学基金创新研究团队项目(2017CXTD005);海南自然科学基金面上项目 资助项目(317071)
通讯作者: 郭桂英     E-mail: 815827434@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
曾家伟
侯国锋
郑继平
杨诺
曾纪峰
郭桂英

引用本文:

曾家伟,侯国锋,郑继平,杨诺,曾纪峰,郭桂英. CRISPR/Cas系统作为抗菌药的现状及展望 *[J]. 中国生物工程杂志, 2018, 38(11): 59-65.

Jia-wei ZENG,Guo-feng HOU,Ji-ping ZHENG,Nou YANG,Ji-feng ZENG,Gui-ying GUO. The Progress of CRISPR/Cas System Used As Antimicrobials. China Biotechnology, 2018, 38(11): 59-65.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20181108        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I11/59

图1  酿脓链球菌的Cas9核酸酶(黄色)依靠sgRNA(红色)引导从而靶向目标DNA
图2  Cascade复合体结构(a) 和Cascade识别目标DNA序列示意图(b)[12]
图3  将CRISPR/Cas系统整合到噬菌粒或噬菌体基因组中,用于噬菌体的包装和细胞内传递[18]
图4  膜囊泡(MVs)介导的HGT
遗传物质
Genetic material
供体细胞
Donor cells
受体细胞
Recipient cells
参考文献
Reference
革兰氏阴性菌
Gram-negative bacteria
质粒DNA
Plasmid DNA
淋病奈瑟氏菌
Neisseria gonorrhoeae
淋病奈瑟氏菌
N. gonorrhoeae
[36]
质粒与噬菌体DNA
Plasmid and phage DNA
大肠杆菌
E. coli
大肠杆菌
E. coli
[37]
噬菌体DNA
Phage DNA
大肠杆菌
E. coli
沙门氏菌
Salmonella enterica
[37]
质粒DNA
Plasmid and
鲍曼不动杆菌
Acinetobacter baumannii
鲍曼不动杆菌
A. baumannii
[38]
质粒DNA
Plasmid and
不动杆菌
Acinetobacter baylyi
不动杆菌和大肠杆菌
A. baylyi and E. coli
[29]
基因组
Chromosomal DNA
牙龈卟啉单胞菌
Porphyromonas gingivalis
牙龈卟啉单胞菌
P. gingivalis
[39]
基因组与质粒DNA
Chromosomal DNA and plasmid DNA
嗜热栖热菌和栖热菌
Scotoductus T. thermophiles and Thermus scotoductus
嗜热栖热菌
T. thermophilus
[40]
革兰氏阳性菌
Gram-positive bacteria
基因组
Chromosomal DNA
瘤胃球菌和白色瘤胃球菌
Ruminococcus sp. and Ruminococcus albus
瘤胃球菌
Ruminococcus sp.
[41]
表1  MVs介导的细菌之间水平基因转移[27]
[1] O'Neill J . Antimicrobial resistance:tackling a crisis for the health and wealth of nations. The Review on Antimicrobial Resistance, 2014,20.
[2] Sander J D, Joung J K . CRISPR-Cas systems for editing,regulating and targeting genomes. Nature Biotechnology, 2014,32(4):347.
doi: 10.1038/nbt.2842 pmid: 24584096
[3] 徐坤 . 源于嗜热链球菌的真核 CRISPR/Cas9 系统的建立,优化及其应用研究. 杨陵:西北农林科技大学, 2015.
Xu K . Establishment,optimization and application of Streptomyces thermophilus CRISPR/Cas9 system. Yangling:Northwest A&F University, 2015.
[4] Staals R H J, Jackson S A, Biswas A , et al. Interference-driven spacer acquisition is dominant over naive and primed adaptation in a native CRISPR-Cas system. Nature Communications, 2016,7:12853.
doi: 10.1038/ncomms12853 pmid: 27694798
[5] Koonin E V, Makarova K S, Zhang F . Diversity,classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology, 2017,37:67-78.
doi: 10.1016/j.mib.2017.05.008 pmid: 28605718
[6] Makarova K S, Wolf Y I, Alkhnbashi O S , et al. An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews Microbiology, 2015,13(11):722.
doi: 10.1038/nrmicro3569 pmid: 26411297
[7] Jiang Y, Qian F, Yang J, Liu Y , et al. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat Commun, 2017,8:15179.
doi: 10.1038/ncomms15179
[8] Cui L, Bikard D . Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Nucleic Acids Research, 2016,44(9):4243-4251.
doi: 10.1093/nar/gkw223 pmid: 27060147
[9] Beloglazova N, Petit P, Flick R , et al. Structure and activity of the Cas3 HD nuclease MJ0384,an effector enzyme of the CRISPR interference. The EMBO Journal, 2011,30(22):4616-4627.
doi: 10.1038/emboj.2011.377 pmid: 22009198
[10] Sinkunas T, Gasiunas G, Fremaux C , et al. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. The EMBO Journal, 2011,30(7):1335-1342.
doi: 10.1038/emboj.2011.41 pmid: 21343909
[11] Caliando B J, Voigt C A . Targeted DNA degradation using a CRISPR device stably carried in the host genome. Nature Communications, 2015,6:6989.
doi: 10.1038/ncomms7989 pmid: 25988366
[12] Westra E R, Swarts D C , Staals R H J,et al.The CRISPRs,they are a-changin:how prokaryotes generate adaptive immunity. Annual Review of Genetics, 2012,46:311-339.
doi: 10.1146/annurev-genet-110711-155447 pmid: 23145983
[13] Gomaa A A, Klumpe H E, Luo M L , et al. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. mBio, 2014,5(1):e00928-13.
doi: 10.1128/mBio.00928-13 pmid: 24473129
[14] Yosef I, Manor M, Kiro R , et al. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. PNAS, 2015,112(23):7267-7272.
doi: 10.1073/pnas.1500107112 pmid: 26060300
[15] Citorik R J, Mimee M, Lu T K . Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol 2014,32:1141-1145.
doi: 10.1038/nbt.3011 pmid: 25240928
[16] Bikard D, Euler C W, Jiang W , et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol, 2014,32(11):1146-1150.
doi: 10.1038/nbt.3043 pmid: 25282355
[17] Chen J, Novick R P . Phage-mediated intergeneric transfer of toxin genes. Science, 2009,323(5910):139-141.
doi: 10.1126/science.1164783 pmid: 19119236
[18] Fagen J R, Collias D, Singh A K , et al. Advancing the design and delivery of CRISPR antimicrobials. Current Dpinon in Biomedical Engineering, 2017,4.
[19] 张文倩, 李华琴 . 噬菌粒载体在噬菌体展示中的应用和研究进展. 生物技术, 2014,24(1):96-100.
Zhang W Q, Li H Q . Application and progress of phagemid vector in phage display. Biotechnology, 2014,24(1):96-100.
[20] Denyes J M, Dunne M, Steiner S , et al. Modified bacteriophage S16 long tail fiber proteins for rapid and specific immobilization and detection of Salmonella cells. Applied and Environmental Microbiology, 2017,83(12):e00277-17.
doi: 10.1128/AEM.00277-17 pmid: 28411223
[21] Yen M, Cairns L S, Camilli A . A cocktail of three virulent bacteriophages prevents vibrio cholerae infection in animal models. Nat Commun, 2017,8:14187.
doi: 10.1038/ncomms14187 pmid: 28146150
[22] Zaczek M, Łusiak-Szelachowska M, Jończyk-Matysiak E , et al. Antibody production in response to staphylococcal MS-1 phage cocktail in patients undergoing phage therapy. Frontiers in Microbiology, 2016,7:1681.
doi: 10.3389/fmicb.2016.01681 pmid: 27822205
[23] Ando H, Lemire S, Pires D P , et al. Engineering modular viral scaffolds for targeted bacterial population editing. Cell Systems, 2015,1(3):187-196.
doi: 10.1016/j.cels.2015.08.013 pmid: 26973885
[24] Yosef I, Goren M G, Globus R , et al. Extending the host range of bacteriophage particles for DNA transduction. Mol Cell, 2017,66(5):721-728.
doi: 10.1016/j.molcel.2017.04.025 pmid: 28552617
[25] Park J Y, Moon B Y, Park J W , et al. Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus. Scientific Reports, 2017,7:44929.
doi: 10.1038/srep44929 pmid: 28322317
[26] Brown L, Wolf J M, Prados-Rosales R , et al. Through the wall:extracellular vesicles in Gram-positive bacteria,mycobacteria and fungi. Nature Reviews Microbiology, 2015,13(10):620.
doi: 10.1038/nrmicro3480 pmid: 4860279
[27] Domingues S, Nielsen K M . Membrane vesicles and horizontal gene transfer in prokaryotes. Current Opinion in Microbiology, 2017,38:16-21.
doi: 10.1016/j.mib.2017.03.012 pmid: 28441577
[28] Gerritzen M J H, Martens D E, Wijffels R H , et al. Bioengineering bacterial outer membrane vesicles as vaccine platform. Biotechnology Advances, 2017,35(5):565-574.
doi: 10.1016/j.biotechadv.2017.05.003 pmid: 28522212
[29] Fulsundar S, Harms K, Flaten G E , et al. Gene transfer potential of outer membrane vesicles of Acinetobacter baylyi and effects of stress on vesiculation. Applied and Environmental Microbiology, 2014,80(11):3469-3483.
doi: 10.1128/AEM.04248-13 pmid: 24657872
[30] Schwechheimer C, Kuehn M J . Outer-membrane vesicles from Gram-negative bacteria:biogenesis and functions. Nature Reviews Microbiology, 2015,13(10):605.
doi: 10.1038/nrmicro3525 pmid: 26373371
[31] 舒聪妍, 王世杰, 高福兰 , 等. 大肠埃希菌外膜囊泡作为新型外源质粒递送载体的研究. 中国生物制品学杂志, 2017, 1-5.
Shu C Y, Wang S J, Gao F L , et al. E.coli outer membrane vesicles as a novel exogenous plasmid delivery vector. Chin J Biologicals, 2017, 1-5.
[32] Andaloussi S E L, Mäger I, Breakefield X O , et al. Extracellular vesicles:biology and emerging therapeutic opportunities. Nature Reviews Drug Discovery, 2013,12(5):347.
doi: 10.1038/nrd3978 pmid: 23584393
[33] 李思迪, 侯信, 亓洪昭 , 等 .外泌体: 为高效药物投递策略提供天然的内源性纳米载体. 化学进展, 2016,28(Z2):353-362.
Li S D, Hou X, Qi H Z , et al. Exosomes:Provide naturally occurring endogenous nanocarriers for effective drug delivery strategies. Progress in Chemistry, 2016,28(Z2):353-362.
[34] Kim S M, Yang Y, Oh S J , et al. Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. Journal of Controlled Release, 2017,266:8-16.
doi: 10.1016/j.jconrel.2017.09.013 pmid: 28916446
[35] 侯国锋, 曾家伟, 羊熙春 , 等. 细菌膜泡与CRISPR联合消除无乳链球菌的研究.热带生物学报, 1-7.
Hou G F, Zeng J W, Yang X C , et al. Study on the combination of OMVs and CRISPR to kill GBS.Journal of Tropical Biology, 1-7.
[36] Dorward D W, Garon C F, Judd R C . Export and intercellular transfer of DNA via membrane blebs of Neisseria gonorrhoeae. Journal of Bacteriology, 1989,171(5):2499-2505.
doi: 10.1128/jb.171.5.2499-2505.1989 pmid: 1056598
[37] Yaron S, Kolling G L, Simon L , et al. Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria. Applied and Environmental Microbiology, 2000,66(10):4414-4420.
doi: 10.1128/AEM.66.10.4414-4420.2000 pmid: 11010892
[38] Rumbo C, Fernández-Moreira E, Merino M , et al. Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles:a new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2011,55(7):3084-3090.
doi: 10.1128/AAC.00929-10
[39] Ho M H, Chen C H, Goodwin J S , et al. Functional advantages of Porphyromonas gingivalis vesicles. PLoS One, 2015,10(4):e0123448.
doi: 10.1371/journal.pone.0123448 pmid: 4405273
[40] Blesa A, Berenguer J . Contribution of vesicle-protected extracellular DNA to horizontal gene transfer in Thermus spp. Int Microbiol, 2015,18(3):177-187.
doi: 10.2436/20.1501.01.248 pmid: 27036745
[41] Klieve A V, Yokoyama M T, Forster R J , et al. Naturally occurring DNA transfer system associated with membrane vesicles in cellulolytic Ruminococcus spp.of ruminal origin. Applied and Environmental Microbiology, 2005,71(8):4248-4253.
doi: 10.1128/AEM.71.8.4248-4253.2005 pmid: 16085810
[42] Kang Y K, Kwon K, Ryu J S , et al. Nonviral genome editing based on a polymer-derivatized CRISPR nanocomplex for targeting bacterial pathogens and antibiotic resistance. Bioconjugate Chem 2017,28:957-967.
doi: 10.1021/acs.bioconjchem.6b00676 pmid: 28215090
[43] Guo L, Xu K, Liu Z , et al. Assembling the Streptococcus thermophilus clustered regularly interspaced short palindromic repeats (CRISPR) array for multiplex DNA targeting. Analytical Biochemistry, 2015,478:131-133.
doi: 10.1016/j.ab.2015.02.028 pmid: 25748774
[1] 武秀知,王宏杰,祖尧. 斑马鱼hoxa1a基因调控颅面骨骼发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(9): 20-26.
[2] 毕博,张宇,赵慧. 酵母杂交系统在CRISPR/Cas9基因编辑系统脱靶率研究中的应用*[J]. 中国生物工程杂志, 2021, 41(6): 27-37.
[3] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[4] 郭洋,陈艳娟,刘怡辰,王海杰,王成稷,王珏,万颖寒,周宇,奚骏,沈如凌. Pd-1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2021, 41(10): 1-11.
[5] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[6] 黄胜, 严启滔, 熊仕琳, 彭弈骐, 赵蕊. 基于CRISPR/Cas9-SAM系统CHD5基因过表达慢病毒载体的构建及对膀胱癌T24细胞增殖,迁移和侵袭能力的影响 *[J]. 中国生物工程杂志, 2020, 40(3): 1-8.
[7] 雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.
[8] 王玥,牟彦双,刘忠华. 基于CRISPR/Cas系统的单碱基编辑技术研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 58-66.
[9] 王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.
[10] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.
[11] 王志敏,毕美玉,贺佳福,任炳旭,刘东军. CRISPR/Cas9系统的发展及其在动物基因编辑中的应用 *[J]. 中国生物工程杂志, 2020, 40(10): 43-50.
[12] 菅璐,黄映辉,梁天亚,王利敏,马洪涛,张婷,李丹阳,王明连. 利用CRISPR/Cas9技术建立敲除JAK2基因K562细胞系 *[J]. 中国生物工程杂志, 2019, 39(7): 39-47.
[13] 周松涛,陈蕴,龚笑海,金坚,李华钟. 利用CRISPR/Cas9技术构建稳定表达人白蛋白基因的中国仓鼠卵巢细胞系 *[J]. 中国生物工程杂志, 2019, 39(4): 52-59.
[14] 万颖寒,慈磊,王珏,龚慧,李俊,董茹,孙瑞林,费俭,沈如凌. PD-L1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2019, 39(12): 42-49.
[15] 刘赛宝,李亚芳,王辉,王伟,冉多良,陈洪岩,孟庆文. 利用CRISPR/Cas9技术构建流感病毒高产细胞系MDCK-Tpl2 -/-*[J]. 中国生物工程杂志, 2019, 39(1): 46-54.