Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (1): 108-114    DOI: 10.13523/j.cb.20160115
综述     
毕赤酵母工程菌高密度发酵研究与进展
武婕, 张晓雪, 余河水, 李薇, 贾宇平, 郭江玉, 张丽娟, 宋新波
天津中医药大学 天津 300193
Research Progress of High Density Fermentation Process of Pichia pastoris
WU Jie, ZHANG Xiao-xue, YU He-shui, LI Wei, JIA Yu-ping, GUO Jiang-yu, ZHANG Li-juan, SONG Xin-bo
Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
 全文: PDF  HTML
摘要:

毕赤酵母表达系统是近年来发展最为迅速的一种新型外源蛋白真核表达系统,被广泛应用于多种不同领域且成功表达了许多基因工程产品。高密度发酵技术已被广泛运用到毕赤酵母工程菌发酵工程当中。主要从毕赤酵母的表达常用菌株、载体及表型等方面介绍了其表达系统,从外源基因自身的特性、培养基的组成、温度、pH、溶氧量及补料流加策略方面阐述了对毕赤酵母高密度发酵的过程及蛋白质表达结果的影响,并对毕赤酵母工程菌高密度发酵进行了展望,为其今后的研究及应用提供借鉴。

关键词: 高密度发酵工程菌表达系统毕赤酵母    
Abstract:

Pichia pastoris expression system is a new foreign protein eukaryotic one which has been the rapid development of the technology in recent years, widely used in many different fields and many gene engineering products has been successfully expressed. The composition of Pichia pastoris expression system was introduced mainly from the aspects of the expression of common strain, vector and phenotype. It was elaborated in detail that how these effect the process of high cell density fermentation of Pichia pastoris and the result protein expression from the aspects of exogenous gene's own characteristics, the composition of culture medium and the tempreture, pH, dissolved oxygen and feeding strategy. At last, the Pichia pastoris high cell density fermentation was discussed and provides a reference for further research.

Key words: Engineering strain    Pichia pastoris    High-density fermentation    Expression system
收稿日期: 2015-08-04 出版日期: 2016-01-11
ZTFLH:  Q815  
基金资助:

天津市组分中药创制与分析服务平台建设资助项目(12TXGCCX03800)

通讯作者: 宋新波     E-mail: songxinbo@tjutcm.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
武婕
张晓雪
余河水
李薇
贾宇平
郭江玉
张丽娟
宋新波

引用本文:

武婕, 张晓雪, 余河水, 李薇, 贾宇平, 郭江玉, 张丽娟, 宋新波. 毕赤酵母工程菌高密度发酵研究与进展[J]. 中国生物工程杂志, 2016, 36(1): 108-114.

WU Jie, ZHANG Xiao-xue, YU He-shui, LI Wei, JIA Yu-ping, GUO Jiang-yu, ZHANG Li-juan, SONG Xin-bo. Research Progress of High Density Fermentation Process of Pichia pastoris. China Biotechnology, 2016, 36(1): 108-114.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160115        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I1/108

[1] Gasser B, Prielhofer R, Marx H, et al. Pichia pastoris: protein production host and model organism for biomedical research. Future Microbiology, 2013, 8 (2): 191-208.
[2] 高敏杰,张许,高鹏,等. 重组毕赤酵母生产外源蛋白的过程控制与生理分析的研究进展. 食品工业科技,2014, 35(24): 389-395. Gao M J, Zhang X, Gao P, et al. Process control and physiological analysis of heterologous protein production by recombinant Pichia pastoris. Science and Technology of Food Industry, 2014, 35 (24): 389-395.
[3] Mack M, Wannermacher M, Hobl B, et al. Comparison of two expression platforms in respect to protein yield and quality: Pichia pastoris versus Pichia angusta. Protein Expression and Purification, 2009, 66(2): 165-171.
[4] Staley C A, Huang A, Nattestad M, et al. Analysis of the 5' untranslated region (5' UTR) of the alcohol oxidase 1 (AOX1) gene in recombinant protein expression in Pichia pastoris. Gene, 2012, 496 (2): 118-127.
[5] Zhou W J, Yang J K, Miao L H, et al. Codon optimization, promoter and expression system selection that achieved high-level production of Yarrowia lipolytica lipase in Pichia pastoris. Enzyme and Microbial Technology, 2015, 71: 66-72.
[6] 朱泰成,李寅. 毕赤酵母表达系统发展概况及趋势. 生物工程学报,2015, 31(6): 929-938. Zhu T C, Li Y. Recent development of Pichia pastoris system:current status and future perspective . Chinese Journal of Biotechnology, 2015, 31(6): 929-938.
[7] Li L, Qian D M, Shao G G, et al . High-level expression, purification and study of bioactivity of fusion protein M-IL-2 (88Arg, 125AIa) in Pichia pastpris. Protein Expression and Purification, 2014, 101 : 99-105.
[8] Zhang J, Wang X, Zheng Y, et al. Enhancing yield of S-adenosylmethionine in Pichia pastoris by controlling NH+4 concentration. Bioprocess and Biosystems Engineering, 2008, 31 (2): 63-67.
[9] Salunkhe S, Soorapaneni S, Prasad K S, et al. Strategies to maximize expression of rightly processed human interferon α2b in Pichia pastoris. Protein Expression and Purification, 2010, 71 (2): 139-146.
[10] Du C, Han L, Xiao A, et al. Secretory expression and purification of the recombinant duck interleukin-2 in Pichia pastoris. Journal of Microbiology and Biotechnology, 2011, 21 (12): 1264-1269.
[11] Zhou X Y, Ying Y, Jianjun T, et al. Production of LYZL6, a novel human c-type lysozyme, in recombinant Pichia pastoris employing high cell density fed-batch fermentation . Journal of Bioscience and Bioengineering, 2014,118 (4): 420-425.
[12] Lee Y C, Chen C T, Chiu Y T, et al. An effective cellulose-to-glucose-to fructose conversion sequence by using enzyme immobilized Fe3O4-loaded mesoporous silica nanoparticles as recyclable biocatalysts. Chem Cat Chem, 2013, 5(8): 2153-2157.
[13] Spohner S C, Muller H, Quitmann H, et al. Expression of enzymes for the usage in food and feed industry with Pichia pastoris. Journal of Biotechnology, 2015, 202: 118-134.
[14] Gao Y, Ma Q, Shan A, et al . Expression in Pichia pastoris and biological activity of avian beta-defensin 6 and its mutant peptide without cysteines. Protein Peptide Lett, 2012,19 (10) :1064-1070.
[15] Celik E, Calik P. Production of recombinant proteins by yeast cells. Biotechnology Advance, 2012, 30 (5): 1108-1118.
[16] Idiris A, Tohda H, Kumagai H, et al. Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol, 2010, 86 (2): 403-417.
[17] Takanori T, Hideki F, Akihiko K . Construction of a Pichia pastoris cell-surface disply system using Flo1P anchor system . Biotechnology Progress, 2006, 22 (4) : 989-993.
[18] Potvin G, Ahmad A, Zhang Z. Bioprocess engineering aspects of heterologous protein production in Pichia pastoris: A review. Biochemical Engineering Journal, 2012, 64: 91-105.
[19] 闫达中,许芳,杨晓燕. 毕赤酵母基因工程菌高密度发酵纳豆激酶条件研究 .中国酿造,2009, 9: 59-61. Yan D Z, Xu F, Yang X Y. High cell density fermentation conditions of nattokinase by genetic engineering strain Pichia pastoris GS115/pPronk1. China Brewing, 2009, 9: 59-61.
[20] Gurkan C, Ellar D J. Recombinant production of bacterial toxins and their derivatives in the methylotrophic yeast Pichia pastoris. Microbial Cell Factories, 2005, 4: 33.
[21] 荣博涵,甄玉国,赵小丽,等. 不同补料方式对酿酒酵母高密度发酵的影响. 中国酿造,2015, 34 (2): 72-75. Rong B H, Zhen Y G, Zhao X L, et al. Effect of fed-batch fermentation modes on high density fermentation of Saccharomyces cerevisiae. China Brewing, 2015, 34 (2): 73-75.
[22] Li X, He X Y, Li Z L, et al. Combined strategies for improving the production of recombinant Rhizopus oryzae lipase in Pichia pastoris. Bioresources, 2013, 8 (2): 2867-2880.
[23] Cos O, Ramón R, Montesinos J L, et al. Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: A review. Microbial Cell Factories, 2006, 5(1): 17.
[24] Hasslacher M, Schall M, Hayn M, et al. High-level intracellular expression of hydroxynitrile lyase from the tropical rubber tree hevea brasiliensis in microbial hosts. Protein Expression and Purification, 1997, 11 (1): 61-71.
[25] 汪艳,李晓,陈勇,等.来源于瘤胃厌氧真菌Neocallimastix frontalis 木聚糖酶在毕赤酵母中的表达. 生物技术通讯,2015, 31 (5): 186-193. Expression of a Xylanase Gene Originated from Rumen Anaerobic Fungi Neocallimastix frontalis in Pichia pastoris. Biotechnology Bulletin, 2015, 31 (5): 186-193.
[26] Xu L, Jiang X, Yang J, et al. Cloning of novel lipase gene lipJ08, from Candida rugosa and expression in Pichia pastoris by codon optimization. Biotechnology Letters, 2010, 32 (2): 269-276.
[27] Jia H Y, Fan G, Yan Q J. High level expression of a hyperthermostable Thermotoga maritina xylanase in Pichua pastoris by codon optimization. Journal of Molecular Catalysis B: Enzymatic, 2012, 78 (2): 72-77.
[28] Charoenrat T, Khumruaengsri N, Promdonkoy P, et al. Improvement of recombinant endoglucanase produced in Pichia pastoris KM71 through the use of synthetic medium for inoculum and pH control of proteolysis. Journal of Bioscience and Bioengineering, 2013, 116 (2): 193-198.
[29] 徐爱才,刘军,李鑫,等.甜蛋白Monellin在毕赤酵母中的表达及响应面法优化发酵培养基 .中国酿造, 2011, (2): 116-120. Xu A C, Liu J, Li X, et al. Expression of monellin in Pichia pastoris and optimization of fermentation medium with response surface methodology. China Brewing, 2011, (2): 116-120.
[30] Cos O, Ramon R, Montesinos J L, et al. A simple model-based control for Pichia pastoris allows a more efficient heterologous protein production bioprocess. Biotechnology and Bioengineering, 2006, 95 (1): 145-154.
[31] Zhu T, You L, Gong F, et al. Combinatorial strategy of sorbitol feeding and low-temperature induction leads to high-level production of alkaline β-mannanase in Pichia pastoris. Enzyme and Microbial Technology, 2011, 49(4): 407-412.
[32] Jin H, Liu G Q, Dai K K, et al. Improvement of porcine interferon-alpha production by recombinant Pichia pastoris via induction at low methanol concentration and low temperature. Applied Biochemistry and Biotechnology, 2011, 165 (2): 559-571.
[33] 刘春风.毕赤酵母表达系统的实际应用研究.厦门科技, 2011, (3): 51-56. Liu C F. The actual application of Pichia expression system. Xiamen Technology, 2011, (3): 51-56.
[34] Ying Y, Zhou X Y, Wu S, et al. High-yield production of the human lysozyme by Pichia pastoris SMD1168 using response surface methodology and high-cell density fermentation . Electronic Journal of Biotechnology, 2014, 17 (6): 311-316.
[35] 陈晓平,房丹丹. Spinigerin α抗菌肽中试化发酵条件的研究. 食品科学,2014, 35 (7): 138-142. Chen X P, Fang D D. Optimization of pilot-scale fermentation conditions for the production of spinigerin a as an antibacterial peptide. Food Science, 2014, 35 (7): 138-142.
[36] Soyaslan E S, Calik P. Enhanced recombinant human erythropoietin production by Pichia pastoris in methanol fed-batch/sorbitol batch fermentation through pH optimization. Biochemical Engineering Journal, 2011, 55 (1): 59-65.
[37] 樊春媛,王雪,郎晓磊.发酵工业中毕赤酵母表达的影响因素. 河北化工,2012, 35 (7): 50-51. Fan C Y, Wang X, Lang X L. The affect factors of the Pichia pastoris expression system in fermentation industry. Hebei Huagong, 2012, 35 (7): 50-51.
[38] Khatri N K, Hoffmann F. Oxygen-limited control of methanol uptake for improved production of a single-chain antibody fragment with recombinant Pichia pastoris. Applied Microbiology and Biotechnology, 2006, 72 (3): 492-498.
[39] 邓毛程,王瑶,冯文清,等. 搅拌器对谷氨酸菌高密度培养的影响 .食品与机械,2007, 23 (5): 101-103. Deng M C, Wang Y, Feng W Q, et al. Study on the effects of stirrer on high cell density culture of glutamic acid bacterium. Food & Machinery, 2007, 23 (5): 101-103.
[40] Wang Y, Wang Z H, Xu Q L, et al. Lowering induction temperature for enhanced production of polygalacturonate lyase in recombinant Pichia pastoris. Process Biochemistry, 2009, 44 (9): 949-954.
[41] Katakura Y, Zhang W, Zhuang G, et al. Effect of methanol concentration on the production of human β 2-glycoprotein I domain V by a recombinant Pichia pastoris: A simple system for the control of methanol concentration using a semiconductor gas sensor. Journal Fermentation and Bioengineering, 1998, 86 (5): 482-487.
[42] Surribas A, Cos O, Montesinos J L, et al. On-line monitoring of the methanol concentration in Pichia pastoris cultures producing an heterologous lipase by sequential injection analysis . Biotechnology Letters, 2003, 25 (21): 1795-1800.
[43] Gurramkonda C, Adnan A, Gäble T, et al. Simple high-cell density fed-batch technique for high-level recombinant protein production with Pichia pastoris: application to intracellular production of hepatitis B surface antigen. Microbial Cell Factories, 2009, 8(1): 13.
[44] 刘斌.巴氏毕赤酵母基因工程菌高密度发酵表达重组人胶原蛋白. 南京:南京理工大学, 环境与生物工程学院,2012. Liu B. High-density Fermentation of Genetically Engineered Pichia pastoris Expressing Recombinant Human- source Collagen. Nanjing:Nanjing University of Science & Technology, Institute of Environmental and Biological Engineering,2012.
[45] Ren H T, Yuan J Q, Bellgardt K H, Macrokinetic model for methylotrophic Pichia pastoris based on stoichiometric balance . Journal of Biotechnology, 2003, 106(1): 53-68.
[46] 吴胜. 毕赤酵母表达重组人溶菌酶的发酵工艺优化及傅里叶红外光谱仪在其过程底物控制中的初步应用研究 .华东理工大学,生物工程学院,2014. Wu S. Expression Optimizing Strategy of Recombinant Human Lysozyme and the Application of Infrared Spectrometer on the Substrate Monitor in Pichia pastoris Fermentation. East China University of Science and Technology, Institute of Bological Engineering,2014.
[47] 梁克学,丁健,侯国力,等.甲醇/山梨醇共混流加控制溶氧改善毕赤酵母表达猪圆环病毒Cap蛋白的发酵性能. 生物加工过程,2014, 12 (5): 14-22. Liang K X, Ding J, Hou G L, et al. Promoting porcine circovirus cap protein expression in Pichia pastoris thtough controlling DO by methanol and soribitol co-feeding. Chinese Journal of Bioprocess Engineering, 2014, 12 (5): 14-22.
[48] Celik E, Calik P, Oliver S G, Fed-batch methanol feeding strategy for recombinant protein production by Pichia pastoris in the presence of co-substrate sorbitol. Yeast, 2009, 26 (9): 473-484.
[49] Calik P, Celik E, Oliver S G, Recombinant protein production by Mut(+) strain of Pichia pastoris using dual carbon sources: methanol and sorbitol. New Biotechnology, 2009, 25 (1): S60.
[50] Zhu T, You L, Gong F, Combinatorial strategy of sorbitol feeding and low-temperature induction leads to high-level production of alkaline β-mannanase in Pichia pastoris. Enzyme and Microbial Technology, 2011, 49 (4): 407-412.

[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 李冰,张传波,宋凯,卢文玉. 生物合成稀有人参皂苷的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 71-88.
[3] 王惠临,周凯强,朱红雨,王力景,杨仲璠,徐明波,曹荣月. 凝血因子VII及其重组表达新进展[J]. 中国生物工程杂志, 2021, 41(2/3): 129-137.
[4] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[5] 陈鑫洁,钱芷兰,刘启,赵清,张元兴,蔡孟浩. 毕赤酵母底盘芳香族氨基酸合成途径改造生产肉桂酸及对香豆酸*[J]. 中国生物工程杂志, 2021, 41(10): 52-61.
[6] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[7] 胡益波,皮畅钰,张哲,向柏宇,夏立秋. 丝状真菌蛋白表达系统研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 94-104.
[8] 齐家龙, 高瑞雨, 靳输梅, 高福兰, 杨旭, 马雁冰, 刘存宝. 水痘-带状疱疹病毒糖蛋白E在昆虫细胞中的表达、鉴定及免疫原性分析 *[J]. 中国生物工程杂志, 2019, 39(8): 17-24.
[9] 田园,李艳玲. 基于重组毕赤酵母的fusaruside生物合成 *[J]. 中国生物工程杂志, 2019, 39(7): 8-14.
[10] 彭强强,刘启,徐名强,张元兴,蔡孟浩. 新型重组毕赤酵母产人胰岛素前体的表达工艺研究 *[J]. 中国生物工程杂志, 2019, 39(7): 48-55.
[11] 严建,贾禄强,丁健,史仲平. 甲醇周期诱导控制强化毕赤酵母生产猪α干扰素 *[J]. 中国生物工程杂志, 2019, 39(6): 32-40.
[12] 姚银,闵琪,熊海容,张莉. 木聚糖酶和甘露聚糖酶在毕赤酵母中的共表达及产酶分析 *[J]. 中国生物工程杂志, 2019, 39(3): 37-45.
[13] 张文玉,魏东升,钱江潮. 共表达PDI1MDH1HAC1基因对重组毕赤酵母分泌表达葡糖氧化酶的影响 *[J]. 中国生物工程杂志, 2019, 39(10): 24-33.
[14] 王彤,徐岩,喻晓蔚. 毕赤酵母Kex2蛋白酶的同源表达及酶学性质 *[J]. 中国生物工程杂志, 2019, 39(1): 38-45.
[15] 黄燕,孙益荣,吴敬,宿玲恰. 重组Humicola insolens角质酶的高密度发酵优化 *[J]. 中国生物工程杂志, 2019, 39(1): 63-70.