Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (1): 71-80    DOI: 10.13523/j.cb.20170111
技术与方法     
以CotC为分子载体在枯草芽孢杆菌表面展示海藻糖合酶
赵一瑾1,2, 王腾飞1,2, 汪俊卿1,2, 王瑞明1,2
1. 齐鲁工业大学生物工程学院 济南 250353;
2. 山东省微生物工程重点实验室 济南 250353
Surface Display of Tres Using CotC as a Molecular Vector on Bacillus subtilis Spores
ZHAO Yi-jin1,2, WANG Teng-fei1,2, WANG Jun-qing1,2, WANG Rui-ming1,2
1. QILU University of Technology, Jinan 250353, China;
2. Department of Biology Engineering, Jinan 250353, China
 全文: PDF(1095 KB)   HTML
摘要:

海藻糖是自然界中普遍存在的一种非还原性双糖,是一种极好的天然干燥剂和保鲜剂。海藻糖合酶能够催化α,α-1,4-糖苷键连接的麦芽糖直接转化为α,α-1,1-糖苷键连接的海藻糖,是生产海藻糖的首选。为获得具有良好展示效果的海藻糖合酶,将其高效稳定的展示于枯草芽孢杆菌芽孢表面,实验同时分别选取增强型绿色荧光蛋白(EGFP)和海藻糖合酶(Tres)作为模型蛋白,以来自枯草芽孢杆菌的芽孢衣壳蛋白CotC作为枯草芽杆菌表面展示的锚定蛋白进行表面展示研究。利用流式细胞仪分析EGFP在芽孢表面展示的情况,结果表明芽孢衣壳蛋白CotC可以将EGFP固定在芽孢的表面。然后将荧光蛋白基因egfp通过酶切替换为海藻糖合酶基因tres,将重组菌株使用pH7.5的缓冲液清洗并重悬,与底物浓度为30%的麦芽糖在50℃水浴条件下作用2h,反应产物利用HPLC检测,能够检测到海藻糖峰,通过计算得到的酶活为252U/ml。说明海藻糖合酶基因通过与芽孢衣壳蛋白CotC融合后可被展示在芽孢的表面。

关键词: 海藻糖枯草芽孢杆菌重组表达表面展示海藻糖合酶    
Abstract:

Trehalose is a ubiquitous non-reducing disaccharide in nature, and is an excellent natural drying agent and preservative. Trehalose synthase capable of catalyzing the maltose directly into trehalose, and is the preferred production of trehalose. To obtain trehalose synthase having good catalytic surface, which is displayed in a highly efficient and stable surface of Bacillus subtilis, at the same experiments were selected enhanced green fluorescent protein (EGFP) and trehalose synthase (Tres) as a model protein, to come from Bacillus subtilis spore coat protein CotC as Bacillus subtilis anchored proteins displayed on the surface. Flow cytometry analysis of the situation in the spore surface display EGFP, the results showed that the capsid protein of Bacillus CotC can EGFP fixed spore surface. Then replace fluorescent protein gene egfp and trehalose synthase gene tres. The recombinant strains was hang up using pH 7.5 buffer suspension and the concentration of substrate for 30% of the maltose in 50℃ water bath roling 2h. Reaction products were analyzed by HPLC and the enzymatic activity can be detected, the enzyme activity of trehalose by calculating reached 252U/ml. This suggests that CotC is associated with the outer part of the coat. CotC can therefore be used as a molecular vehicle for spore surface display of exogenous proteins.

Key words: Trehalose    Bacillus subtilis    Surface display    Recombinant expression    Trehalose synthase
收稿日期: 2016-06-27 出版日期: 2017-01-25
ZTFLH:  Q814.9  
基金资助:

国家自然科学基金资助项目(31501413)

通讯作者: 王瑞明     E-mail: ruiming3K@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

赵一瑾, 王腾飞, 汪俊卿, 王瑞明. 以CotC为分子载体在枯草芽孢杆菌表面展示海藻糖合酶[J]. 中国生物工程杂志, 2017, 37(1): 71-80.

ZHAO Yi-jin, WANG Teng-fei, WANG Jun-qing, WANG Rui-ming. Surface Display of Tres Using CotC as a Molecular Vector on Bacillus subtilis Spores. China Biotechnology, 2017, 37(1): 71-80.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170111        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I1/71

[1] Leslie S B, Israeli E, Lighthart B, et al. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Applied & Environmental Microbiology, 1995, 61(10):3592-3597.
[2] 齐向辉,陈华友,蒙健宗,等. 海藻糖在生物组织器官保护方面的新应用. 安徽农业科学,2009, 37(33):16729-16732. Qi X H, Chen H Y, Meng J Z, et al. Novel application of trehalose in the bioprotection of biological tissue and organ. Journal of Anhui Agricultural Sciences, 2009, 37(33):16729-16732.
[3] Elbein A D. The metabolism of alpha, alpha-trehalose.. Advances in Carbohydrate Chemistry & Biochemistry, 1974, 30:227-256.
[4] Avonce N, Mendoza-Vargas A, Morett E, et al. Insights on the evolution of trehalose biosynthesis. Bmc Evolutionary Biology, 2006, 6(1):1-15.
[5] Elbein A D, Pan Y T, Pastuszak I, et al. New insights on trehalose:a multifunctional molecule.. Glycobiology, 2003, 13(4):17R-27R.
[6] Benaroudj N, Lee D H, Goldberg A L. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem, 2001,276(26):24261-24267.
[7] 靳文斌,李克文,胥九兵,等. 海藻糖的特性、功能及应用. 精细与专用化学品,2015, 23(1):30-33. Jin W B, Li K W, Xu J B, et al. The character and function of trehalose and its application. Fine & Specialty Chemicals, 2015, 23(1):30-33.
[8] Jules M, Beltran G, François J, et al. New insights into trehalose metabolism by Saccharomyces cerevisiae:NTH2 encodes a functional cytosolic trehalase, and deletion of TPS1 reveals Ath1p-dependent trehalose mobilization.. Applied & Environmental Microbiology, 2008, 74(3):605-614.
[9] 薛鸿毅,张莉,徐汝意,等. 酶法生产海藻糖研究进展. 中国食品添加剂,2011,(4):159-162. Xue H Y, Zhang L, Xu R Y, et al. Study on the production of trehalose through enzyme method. China Food Additives, 2011,(4):159-162.
[10] Ryu S I, Park C S, Cha J, et al. A novel trehalose-synthesizing glycosyltransferase from Pyrococcus horikoshii:Molecular cloning and characterization. Biochemical & Biophysical Research Communications, 2005, 329(2):429-436.
[11] Ryu S I, Kim J E, Kim E J, et al. Catalytic reversibility of Pyrococcus horikoshii trehalose synthase:Efficient synthesis of several nucleoside diphosphate glucoses with enzyme recycling. Process Biochemistry, 2011, 46(1):128-134.
[12] Kim H M, Chang Y K, Ryu S I, et al. Enzymatic synthesis of a galactose-containing trehalose analogue disaccharide by Pyrococcus horikoshii, trehalose-synthesizing glycosyltransferase:Inhibitory effects on several disaccharidase activities. Journal of Molecular Catalysis B Enzymatic, 2007, 49(1-4):98-103.
[13] Avonce N, Mendoza-Vargas A, Morett E, et al. Insights on the evolution of trehalose biosynthesis. Bmc Evolutionary Biology, 2006, 6(1):1-15.
[14] Yoshida M, Nakamura N, Horikoshi K. Production of trehalose from starch by maltose phosphorylase and trehalose phosphorylase from a strain of plesiomonas. Starch-Starke, 1997, 49(49):21-26.
[15] Woo E J, Ryu S I, Song H N, et al. Structural insights on the new mechanism of trehalose synthesis by trehalose synthase TreT from Pyrococcus horikoshii. Journal of Molecular Biology, 2010, 404(2):247-259.
[16] Wernerus H, Stahl S. Biotechnogical applications for surface-engineered bacteria. Biotechnology and Applied Biochemistry, 2004, 40(3):209-228.
[17] 余小霞,田健,伍宁丰. 枯草芽胞杆菌芽胞表面展示外源蛋白的研究进展. 中国农业科技导报,2013,15(5):31-38. Yu X X, Tian J, Wu N F. Research progress on Bacillus subtilis spore display of recombinant proteins. Journal of Agricultural Science & Technology, 2013, 15(5):31-38.
[18] 李倩,宁德刚,吴春笃. 以CotX为分子载体在枯草芽胞杆菌芽胞表面展示绿色荧光蛋白. 生物工程学报,2010, 26(2):264-269. Li Q, Ning D G, Wu C D. Surface display of GFP using CotX as a molecular vector on Bacillus subtilis spores. Chinese Journal of Biotechnology, 2010, 26(2):264-269.
[19] Ryu S I, Kim J E, Huong N T, et al. Molecular cloning and characterization of trehalose synthase from Thermotoga maritima, DSM3109:Syntheses of trehalose disaccharide analogues and NDP-glucoses. Enzyme & Microbial Technology, 2010, 47(6):249-256.
[20] 王贺,杨瑞金,华霄,等. 利用枯草芽孢衣壳蛋白表面展示β-半乳糖苷酶. 食品与发酵工业,,2012, 38(7):1-5. Wang H, Yang R J, Hua X, et al. Functional display of β-galactosidase on the spore surface of Bacillus subtilis using spore coat protein as anchor motif. Food & Fermentation Industries, 2012, 38(7):1-5.
[21] Tavassoli S, Hinc K, Iwanicki A, et al. Investigation of spore coat display of Bacillus subtilis β-galactosidase for developing of whole cell biocatalyst.Arch Microbiol, 2013, 195(3):197-202.
[22] Nicholson W L, Setlow P. In Molecular Biological Methods for Bacillus. Chichester:John Wiley and Sona Inc, 1990:391-450.
[23] Santos C A F, Rodrigues M A, Zucchi M I. Proceedings of the National Academy of Science of the United States of America. Pesquisa Agropecuária Brasileira, 2013.
[24] 郭夏丽, 狄源宁, 王岩. 枯草芽孢杆菌产芽孢条件的优化. 中国土壤与肥料, 2012,(3):99-103. Guo X L, Di Y N, Wang Y. Optimization of sporulation conditions of Bacillus subtilis. Soil & Fertilizer Sciences in China, 2012,(3):99-103.
[25] 邵引刚, 李峰, 孙辉,等. 海藻糖的应用及基因工程研究. 安徽农业科学, 2008, 36(3):857-859. Shao Y G,Li F,Sun H, et al. Study on the genetic engineering of trehalose and its application. Journal of Anhui Agricultural Sciences, 2008, 36(3):857-859.
[26] 薛鸿毅. 恶臭假单胞菌海藻糖合酶基因在大肠杆菌中的表达. 济南:山东轻工业学院, 食品与生物工程学院,2012. Xue H Y. Study on Expression of Trehalose Synthase Genes from Pseudomonas putida P06 in E.coli.Jinan:Shandong Polytechnic University, School of Food and Bioengineering,2012.
[27] Isticato R, Esposito G, Zilh o R, et al. Assembly of multiple CotC forms into the Bacillus subtilis spore coat. Journal of Bacteriology, 2004, 186(4):1129-1135.
[28] Isticato R, Cangiano G, Tran H T, et al. Surface display of recombinant proteins on Bacillus subtilis spores. Journal of Bacteriology, 2001, 183(21):6294-6301.

[1] 王惠临,周凯强,朱红雨,王力景,杨仲璠,徐明波,曹荣月. 凝血因子VII及其重组表达新进展[J]. 中国生物工程杂志, 2021, 41(2/3): 129-137.
[2] 陈素芳,夏明印,曾丽艳,安晓琴,田敏芳,彭建. 抗菌肽Cec4a的重组表达和抗菌活性研究*[J]. 中国生物工程杂志, 2021, 41(10): 12-18.
[3] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[4] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.
[5] 乐易林,傅毓,倪黎,孙建中. 热稳定性丙酮酸:铁氧还蛋白氧化还原酶异源表达及其在乙酰辅酶A合成中的应用 *[J]. 中国生物工程杂志, 2020, 40(3): 72-78.
[6] 赵晓艳,陈允妲,章雅倩,吴晓玉,王飞,陈金印. Myxococcus sp.V11海藻糖合酶TreS II分子改造 *[J]. 中国生物工程杂志, 2020, 40(3): 79-87.
[7] 薛瑞,姚林,王瑞,罗正山,徐虹,李莎. 重组贻贝足蛋白的研究进展与应用*[J]. 中国生物工程杂志, 2020, 40(11): 82-89.
[8] 封金云,宿玲恰,吴敬. 多酶复配合成海藻糖及其分离提取的研究 *[J]. 中国生物工程杂志, 2019, 39(7): 65-70.
[9] 王鑫淼,张康,陈晟,吴敬. 嗜热网球菌纤维二糖差向异构酶在枯草芽孢杆菌中的表达及发酵优化 *[J]. 中国生物工程杂志, 2019, 39(7): 24-31.
[10] 杜立,宿玲恰,吴敬. 提高源自Bacillus circulans 251的β-CGTase对麦芽糖亲和性及其在生产海藻糖中的应用 *[J]. 中国生物工程杂志, 2019, 39(5): 96-104.
[11] 李法彬,刘露,杜燕,班睿. 构建重组枯草芽孢杆菌催化制备D-对羟基苯甘氨酸[J]. 中国生物工程杂志, 2019, 39(3): 75-86.
[12] 韩挺翰,龚雪梅,郦娟,丁亚芳,卢辰,张坤晓,高嵩,许恒皓. 一种来源于大菱鲆的热敏型尿嘧啶DNA糖苷酶的克隆表达及酶学性质鉴定 *[J]. 中国生物工程杂志, 2019, 39(10): 34-43.
[13] 程功,焦思明,任立世,冯翠,杜昱光. 枯草芽孢杆菌壳聚糖酶水解制备低脱乙酰度壳寡糖及其组分分析 *[J]. 中国生物工程杂志, 2018, 38(9): 19-26.
[14] 王艺颖,程海荣. 解脂耶氏酵母细胞表面展示乳糖水解酶高效水解乳糖 *[J]. 中国生物工程杂志, 2018, 38(8): 41-49.
[15] 孙帆,宿玲恰,张康,吴敬. D-阿洛酮糖 3-差向异构酶在枯草芽孢杆菌中的高效表达及固定化细胞研究 *[J]. 中国生物工程杂志, 2018, 38(7): 83-88.