Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (1): 47-54    DOI: 10.13523/j.cb.20160107
研究报告     
D194G突变对meso-2,3-丁二醇脱氢酶催化特性的影响
郝文博1,2, 姬芳玲1, 王静云1, 张悦1, 王天琪1, 车文实2, 包永明1
1. 大连理工大学生命科学与技术学院 大连 116024;
2. 黑河学院物理化学系 黑河 164300
Effects of D194G Mutant on meso-2, 3-Butanediol Dehydrogenase Catalytic Properties
HAO Wen-bo1,2, JI Fang-ling1, WANG Jing-yun1, ZHANG Yue1, WANG Tian-qi1, CHE Wen-shi2, BAO Yong-ming1
1. School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China;
2. Department of Physics and Chemistry, Heihe University, Heihe 164300, China
 全文: PDF  HTML
摘要:

目的:比较来源于Enterobacter aerogenes CICC10293和Bacillus subtilis的meso-2,3-丁二醇脱氢酶(E. a-BDH和D194G B. s-BDH)活性和动力学参数,分析D194氨基酸对BDH催化特性的影响。方法:利用E. coli BL21(DE3)原核表达E. a-BDH和D194G B. s-BDH,经HiTrap Q FF阴离子交换柱和Superdex 75凝胶柱纯化后,用MALDI-TOF MS确定其分子质量;检测NADH/NAD+氧化还原的吸光度变化确定BDH活性、辅酶和底物的特异性、最适pH、温度及动力学参数。结果:重组表达E. a-BDH和D194G B. s-BDH是同源四聚体蛋白,基因序列有两处碱基不同(g.27A/T和g.581A/G),其中g.581A/G导致BDH的一处氨基酸发生改变(p.D194G)。D194G B. s-BDH的活性约为E. a-BDH的2.3%,并且丧失了氧化meso-2,3-丁二醇的能力。二者均以乙偶姻/NADH为最适底物,但D194G B. s-BDH的KmE. a-BDH的5.63倍。结论:D194G氨基酸突变降低了BDH的活性。

关键词: meso-2,3-丁二醇脱氢酶乙偶姻枯草芽孢杆菌    
Abstract:

Objective: To compare the activity and kinetic parameters of meso-2,3-Butanediol dehydrogenase (BDH) from Enterobacter aerogenes (E. a-BDH) and Bacillus subtilis (B. s-BDH), and analysis the influences of the residue D194 on catalytic properties of BDH. Methods: E. a-BDH and D194G B. s-BDH were expressed in E. coli BL21 (DE3), and purified by HiTrap Q FF anion-exchange and Superdex 75 gel column. MALDI-TOF MS was used to determine the molecular weight. The enzyme activity, coenzyme and substrate specificity, optimum pH, temperature, and kinetic parameters of BDH were investigated by monitoring changes in absorbance of NADH/NAD+ redox reaction. Results: The recombinant E. a-BDH and D194G B. s-BDH are homo-tetramer. Their nucleotide sequences exhibit two different bases (g.27A/T and g.581A/G), and g.581A/G results in an amino acid change (p.D194G). D194G B. s-BDH activity is about 2.3% of E. a-BDH, and lost the ability of oxidation of meso-2, 3-butanediol. Acetoin/NADH is the optimal substrate of BDH, but Km of D194G B. s-BDH is 5.63 times greater than that of E. a-BDH. Conclusion: D194G mutation reduces the BDH activity.

Key words: meso-2 3-butanediol dehydrogenase    Acetoin    Bacillus subtilis
收稿日期: 2015-08-04 出版日期: 2016-01-11
ZTFLH:  Q78  
基金资助:

黑龙江省青年科学基金资助项目(QC2012C009)

通讯作者: 包永明     E-mail: biosci@dlut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郝文博
姬芳玲
王静云
张悦
王天琪
车文实
包永明

引用本文:

郝文博, 姬芳玲, 王静云, 张悦, 王天琪, 车文实, 包永明. D194G突变对meso-2,3-丁二醇脱氢酶催化特性的影响[J]. 中国生物工程杂志, 2016, 36(1): 47-54.

HAO Wen-bo, JI Fang-ling, WANG Jing-yun, ZHANG Yue, WANG Tian-qi, CHE Wen-shi, BAO Yong-ming. Effects of D194G Mutant on meso-2, 3-Butanediol Dehydrogenase Catalytic Properties. China Biotechnology, 2016, 36(1): 47-54.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160107        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I1/47

[1] Xiao Z J, Lu J R. Strategies for enhancing fermentative production of acetoin: A review. Biotechnology Advances, 2014, 32(2): 492-503.
[2] Sun J, Zhang L, Rao B, et al. Enhanced acetoin production by Serratia marcescens H32 with expression of a water-forming NADH oxidase. Bioresource Technology, 2012, 119(7): 94-98.
[3] Liu Y, Zhang S, Yong Y, et al. Efficient production of acetoin by the newly isolated Bacillus licheniformis strain MEL09. Process Biochemistry, 2011, 46(1): 390-394.
[4] Teixeira R M, Cavalheiro D, Ninow J L, et al. Optimization of acetoin production by Hanseniaspora guilliermondii using experimental design. Brazilian Journal of Chemical Engineering, 2002, 19(2): 181-186.
[5] Zhang Y J, Li S B, Liu L M, et al. Acetoin production enhanced by manipulating carbon flux in a newly isolated Bacillus amyloliquefaciens. Bioresource Technology, 2013, 130(1): 256-260.
[6] Luo Q L, Wu J, Wu M C. Enhanced acetoin production by Bacillus amyloliquefaciens through improved acetoin tolerance. Process Biochemistry, 2014, 49(8): 1223-1230.
[7] Zhang X, Zhang R Z, Bao T, et al. The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis. Merabolic Engineering, 2014, 23(2): 34-41.
[8] Li S B, Xu N, Liu L M, et al. Engineering of carboligase activity reaction in Candida glabrata for acetoin production. Merabolic Engineering, 2014, 22(3): 32-39.
[9] Borim K, Lee S, Park J, et al. Enhanced 2, 3-butanediol production in recombinant Klebsiella pneumoniae via overexpression of synthesis-related genes. Journal of Microbiology and Biotechnology, 2012, 22(9): 1258-1263.
[10] Han S H, Lee J E, Park K, et al. Production of 2, 3-butanediol by a low-acid producing Klebsiella oxytoca NBRF4. New Biotechnology, 2013, 30(2): 166-172.
[11] Yang T W, Rao Z M, Zhang X, et al. Effects of corn steep liquor on production of 2, 3-butanediol and acetoin by Bacillus subtilis. Process Biochemistry, 2013, 48(11): 1610-1617.
[12] Nakashima N, Akita H, Hoshino T. Establishment of a novel gene expression method, BICES (biomass-inducible chromosome-based expression system), and its application to the production of 2, 3-butanediol and acetoin, Merabolic Engineering, 2014, 25(1): 204-214.
[13] Ji X J, Huang H, Ouyang P K. Microbial 2, 3-butanediol production: a state-of-the-art review. Biotechnology Advances, 2011, 29(3): 351-364.
[14] Celinska E, Grajek W. Biotechnological production of 2, 3-butanediol - current state and prospects, Biotechnology Advances, 2009, 27(6): 715-725.
[15] Li L X, Wang Y, Zhang L J, et al. Biocatalytic production of (2S, 3S)-2, 3-butanediol from diacetyl using whole cells of engineered Escherichia coli. Bioresource Technology, 2011, 115(4): 111-116.
[16] Zhang LY, Yang Y L, Sun J A, et al. Microbial production of 2, 3-butanediol by a mutagenized strain of Serratia marcescens H30. Bioresource Technology, 2010, 101(6): 1961-1967.
[17] Yu B, Sun J B, Bommareddy R R, et al. Novel (2R, 3R)-2, 3-butanediol dehydrogenase from potential industrial strain Paenibacillus polymyxa ATCC 12321. Applied and Environmental Microbiology, 2011, 77(12): 4230-4233.
[18] González E, Fernández M R, Larroy C, et al. Characterization of a (2R, 3R)-2,3-butanediol dehydrogenase as the Saccharomyces cerevisiae YAL060W gene product. Journal of Biological Chemistry, 2000, 275(46): 35876-35885.
[19] Hao W B, Ji F L, Wang J Y, et al. Biochemical characterization of unusual meso-2, 3-butanediol dehydrogenase from a strain of Bacillus subtilis. Journal of Molecular Catalysis B-Enzymatic, 2014, 109(1): 184-190.
[20] Otagiri M, Kurisu G, Ui S, et al. Crystal structure of meso-2, 3-butanediol dehydrogenase in a complex with NAD+ and inhibitor mercaptoethanol at 1.7 A resolution for understanding of chiral substrate recognition mechanisms. Journal of Biochemistry, 2001, 129(2): 205-208.
[21] Giovannini P P, Medici A, Bergamini C M, et al. Properties of diacetyl (acetoin) reductase from Bacillus stearothermophilus. Bioorganic & Medicinal Chemistry Letters, 1996, 4(8): 1197-1201.
[22] Schwarz J G, Hang Y D. Purification and characterization of diacetyl reductase from Kluyveromyces marxianus. Letters in Applied Microbiology, 1994, 18(5): 272-276.
[23] Ui S, OkajimaY, Mimura A, et al. Sequence analysis of the gene for and characterization of D-acetoin forming meso-2,3-butanediol dehydrogenase of Klebsiella pneumoniae expressed in Escherichia coli. Journal of Fermentation and Bioengineering, 1997, 83(97): 32-37.
[24] Filling C, Berndt K D, Benach J, et al. Critical residues for structure and catalysis in short-chain dehydrogenases/reductases. Journal of Biological Chemistry, 2002, 277(28): 25677-25684.
[25] Ghosh D, Weeks C M, Grochulski P, et al. Three-dimensional structure of holo 3 alpha, 20 beta-hydroxsteroid dehydrogenase: a member of short-chain dehydrogenase family. Proceedings of the National Academy of Sciences, 1991, 88(22): 10064-10068.
[26] Tanaka N, Nonaka T, Nakanishi M, et al. Crystal structure of the ternary complex of mouse lung carbonyl reductase at 1.8 ? resolution: the structural origin of coenzyme specificity in the short-chain dehydrogenase/reductase family. Structure, 1996, 4(1): 33-45.
[27] Otagiri M, Ui S, Takusagawa Y, et al. Structural basis for chiral substrate recognition by two 2,3-butanediol dehydrogenases. FEBS Letters, 2010, 584(1): 219-223.
[28] Rao B, Zhang L Y, Sun J A, et al. Characterization and regulation of the 2, 3-butanediol pathway in Serratia marcescens. Applied Microbiology and Biotechnology, 2012, 93(5): 2147-2159.

[1] 王鑫淼,张康,陈晟,吴敬. 嗜热网球菌纤维二糖差向异构酶在枯草芽孢杆菌中的表达及发酵优化 *[J]. 中国生物工程杂志, 2019, 39(7): 24-31.
[2] 李检秀,陈先锐,陈小玲,黄艳燕,莫棋文,谢能中,黄日波. 应用合成生物学策略构建全细胞生物催化剂合成(S)-乙偶姻 *[J]. 中国生物工程杂志, 2019, 39(4): 60-68.
[3] 李法彬,刘露,杜燕,班睿. 构建重组枯草芽孢杆菌催化制备D-对羟基苯甘氨酸[J]. 中国生物工程杂志, 2019, 39(3): 75-86.
[4] 程功,焦思明,任立世,冯翠,杜昱光. 枯草芽孢杆菌壳聚糖酶水解制备低脱乙酰度壳寡糖及其组分分析 *[J]. 中国生物工程杂志, 2018, 38(9): 19-26.
[5] 孙帆,宿玲恰,张康,吴敬. D-阿洛酮糖 3-差向异构酶在枯草芽孢杆菌中的高效表达及固定化细胞研究 *[J]. 中国生物工程杂志, 2018, 38(7): 83-88.
[6] 王男,金吕华,张玲,林荣,杨海麟. 信号肽对亮氨酸脱氢酶在Bacillus subtilis中分泌表达的影响及酶学性质研究[J]. 中国生物工程杂志, 2018, 38(4): 46-53.
[7] 张玲,王男,金吕华,林荣,杨海麟. 双启动子促进亮氨酸脱氢酶在Bacillus subtilis中表达及发酵研究 *[J]. 中国生物工程杂志, 2018, 38(12): 21-31.
[8] 赵一瑾, 王腾飞, 汪俊卿, 王瑞明. 以CotC为分子载体在枯草芽孢杆菌表面展示海藻糖合酶[J]. 中国生物工程杂志, 2017, 37(1): 71-80.
[9] 胡桂元, 杨套伟, 饶志明, 刘梅, 徐美娟, 张显. 增强胞内NDAH水平和乙偶姻还原酶活力提高2,3-丁二醇产量[J]. 中国生物工程杂志, 2016, 36(6): 57-64.
[10] 刘晓霏, 付晶, 霍广鑫, 章博, 王智文, 陈涛. 生物法制备平台化合物乙偶姻的最新研究进展[J]. 中国生物工程杂志, 2015, 35(10): 91-99.
[11] 柳慧丽, 李园园, 鞠瑞成, 赵宏涛, 杨清. 拮抗枯草芽孢杆菌KC-5的分离鉴定及其发酵优化[J]. 中国生物工程杂志, 2014, 34(3): 96-102.
[12] 黄翔峰, 詹鹏举, 彭开铭, 刘佳, 陆丽君. 培养基中铁离子对枯草芽孢杆菌CICC 23659发酵产脂肽的影响研究[J]. 中国生物工程杂志, 2013, 33(6): 52-61.
[13] 吴海丽, 张三军, 杜冰, 钱旻, 任华. Bacillus subtilis RecQ酶精氨酸突变体表达纯化及活性检测[J]. 中国生物工程杂志, 2013, 33(12): 29-34.
[14] 刘锦霞, 李娜, 杜文静, 武建荣, 李晶, 丁品, 沈思远, 张建军. 枯草芽孢杆菌高效生防乳剂研究[J]. 中国生物工程杂志, 2011, 31(9): 69-75.
[15] 张洋, 杜姗姗, 谢希贤, 徐庆阳, 陈宁. 过表达purA基因对腺苷积累的影响[J]. 中国生物工程杂志, 2011, 31(12): 22-26.