Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (6): 84-92    DOI: 10.13523/j.cb.2001017
综述     
乳酸菌基因改造技术研究进展 *
樊斌1,2,陈欢1,2,宋婉莹1,2,陈光1,2,王刚1,2,3,**()
1 吉林农业大学生命科学学院 长春 130118
2 秸秆生物学与利用教育部重点实验室 长春 130118
3 中粮集团吉林中粮生化有限公司 长春 130033
Advances in Lactic Acid Bacteria Gene Modification
FAN Bin1,2,CHEN Huan1,2,SONG Wan-ying1,2,CHEN Guang1,2,WANG Gang1,2,3,**()
1 Jilin Agricultural University, College of Life Science, Changchun 130118,China
2 Key Laboratory of Straw Biology and Utilization, the Ministry of Education,Jilin Agricultural University,Changchun 130118,China
3 Cofco Biochemical Co,LTD of Jilin,Changchun 130033,China
 全文: PDF(1123 KB)   HTML
摘要:

乳酸菌是一类革兰氏阳性、不产芽孢、兼性厌氧、发酵多种碳源产乳酸的重要工业微生物之一,广泛应用于食品、医药及化学品的生产当中。随着乳酸菌工业化应用范畴的不断拓展,乳酸菌生理生化特性、酸耐受特性,代谢途径及产酸调控机理的研究受到广泛关注。因此,建立稳定、高效的乳酸菌基因编辑方法,借助基因编辑技术来解析代谢关键基因及基因网络的功能,调控代谢途径,十分必要。对乳酸菌基因编辑技术的研究进展做一综述,并对乳酸菌基因编辑技术的未来研究方向进行展望。

关键词: 乳酸菌基因编辑同源重组位点特异线性DNACRISPR    
Abstract:

Lactic acid bacteria (LAB) is a Gram-positive, obligate anaerobic bacterium, and the main production of lactic acid. It was one of the most important industry strain which was used in food industry, pharmaceutical industry and chemicals industry. In recent years, with the continuous improvement of the industry application of LAB, studies were focused on physiological and biochemical characteristics, acid tolerance characteristic, metabolic pathways and mechanism of lactic acid production of lactic acid bacteria. So, it is necessary to establish a stable and efficient gene-modifying method for analyzing the functions of key genes and geneme network and adjusting the metabolic pathway. The paper reviews the recent progress and future prospects of LAB gene-modifying technologies.

Key words: Lactic acid bacteria    Gene modification    Homologous recombination    Loci specific    Linear DNA    CRISPR
收稿日期: 2020-01-05 出版日期: 2020-06-23
ZTFLH:  Q815  
基金资助: * 吉林省科技厅自然科学基金(17MY057Z);吉林省秸秆科技创新平台项目([(2014)C-1]);长春市科技局地院合作项目(17DY015);吉林省科技厅重点研发计划(2020042097NC)
通讯作者: 王刚     E-mail: gangziccc@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
樊斌
陈欢
宋婉莹
陈光
王刚

引用本文:

樊斌,陈欢,宋婉莹,陈光,王刚. 乳酸菌基因改造技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 84-92.

FAN Bin,CHEN Huan,SONG Wan-ying,CHEN Guang,WANG Gang. Advances in Lactic Acid Bacteria Gene Modification. China Biotechnology, 2020, 40(6): 84-92.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2001017        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I6/84

图1  单交换同源重组
图2  双交换同源重组敲除
图3  双交换同源重组基因整合
图4  位点特异性重组
图5  基于lox66与lox71位点的Cre/lox P系统基因改造
图6  单双链重组改造
图7  CRISPR/Cas9基因编辑[71]
[1] Bosma E F, Forster J, Nielsen A T . Lactobacilli and pediococci as versatile cell factories-evaluation of strain properties and genetic tools. Biotechnology Advances, 2017,35(4):419-442.
[2] 凌代文, 冬秀珠 . 乳酸菌分类鉴定及实验方法. 北京: 中国轻工业出版社, 1999:1-4, 6-16, 45-47.
Ling D W, Dong X Z. Classification and identification of lactic acid bacteria and experimental methods. Beijing: China Light Industry Press, 1999:1-4, 6-16, 45-47.
[3] Bourdichon F, Casaregola S, Farrokh C , et al. Food fermentations: microorganisms with technological beneficial use. International Journal of Food Microbiology, 2012,154(3):87-97.
doi: 10.1016/j.ijfoodmicro.2011.12.030 pmid: 22257932
[4] Solem C, Dehli T, Jensen P R . Rewiring Lactococcus lactis for ethanol production. Applied and Environmental Microbiology, 2013,79(8):2512-2518.
[5] Kyla-Nikkila K, Hujanen M, Leisola M , et al. Metabolic engineering of Lactobacillus helveticus CNRZ32 for production of pure L- (+)-lactic acid. Applied and Environmental Microbiology, 2000,66(9):3835-3841.
pmid: 10966398
[6] Sybesma W, Starrenburg M, Kleerebezem M , et al. Increased production of folate by metabolic engineering of Lactococcus lactis. Applied and Environmental Microbiology, 2003,69(6):3069-3076.
doi: 10.1128/aem.69.6.3069-3076.2003 pmid: 12788700
[7] Karimi S, Ahl D, Evelina Vågesjö , et al. In Vivo and In Vitro detection of luminescent and fluorescent Lactobacillus reuteri and application of red fluorescent mCherry for assessing plasmid persistence. PLoS One, 2016,11(3):1-22.
[8] Kong W, Kapuganti V S, Lu T . A gene network engineering platform for lactic acid bacteria. Nucleic Acids Research, 2012,44(4):1-10.
[9] Wang C, Cui Y, Qu X . Mechanisms and improvement of acid resistance in lactic acid bacteria. Archives of Microbiology, 2017,200(2), 195-201.
pmid: 29075866
[10] Hama S, Mizuno S, Kihara M , et al. Production of d-lactic acid from hardwood pulp by mechanical milling followed by simultaneous saccharification and fermentation using metabolically engineered Lactobacillus plantarum. Bioresource Technology, 2015,187:167-172.
pmid: 25846187
[11] Okano K, Zhang Q, Shinkawa S , et al. Efficient production of optically pure D-lactic acid from raw corn starch by using a genetically modified L-lactate dehydrogenase gene-deficient and α-amylase-secreting Lactobacillus plantarum strain. Applied and Environmental Microbiology, 2009,75(2):462-467.
[12] Antonio M B, José Luis R B, Rufino J D . Knockout of three-component regulatory systems reveals that the apparently constitutive plantaricin-production phenotype shown by Lactobacillus plantarum on solid medium is regulated via quorum sensing. International Journal of Food Microbiology, 2009,130(1):35-42.
doi: 10.1016/j.ijfoodmicro.2008.12.033 pmid: 19185943
[13] Fu R Y, Bongers R S, Swam I I V , et al. Introducing glutathione biosynthetic capability into Lactococcus lactis subsp. cremoris NZ9000 improves the oxidative-stress resistance of the host. Metabolic Engineering, 2006,8(6):662-671.
[14] Qiu Z, Gao Q, Bao J . Engineering Pediococcus acidilactici with xylose assimilation pathway for high titer cellulosic L-lactic acid fermentation. Bioresource Technology, 2017,249:9-15.
pmid: 29035728
[15] Radecke S, Radecke F, Cathomen T , et al. Zinc-finger nuclease-induced gene repair with oligodeoxynucleotides: wanted and unwanted target locus modifications. Molecular Therapy, 2010,18(4):743-753.
doi: 10.1038/mt.2009.304 pmid: 20068556
[16] Kusano H, Onodera H, Kihira M , et al. A simple gateway-assisted construction system of TALEN genes for plant genome editing. Scientific Reports, 2016,6:30234.
[17] Chang Y, Su T, Qi Q , et al. Easy regulation of metabolic flux in Escherichia coli using an endogenous type I-E CRISPR-Cas system. Microbial Cell Factories, 2016,15(1):195.
[18] Herring C D, Glasner J D, Blattner F R . Gene replacement without selection: regulated suppression of amber mutations in Escherichia coli. Gene, 2003,311(1):153-163.
[19] Lee J W, In J H, Park J B , et al. Co-expression of two heterologous lactate dehydrogenases genes in Kluyveromyces marxianus for l-lactic acid production. Journal of Biotechnology, 2017,241:81-86.
pmid: 27867078
[20] Goh Y J, Barrangou R . Harnessing CRISPR-Cas systems for precision engineering of designer probiotic lactobacilli. Current Opinion in Biotechnology, 2019,56:163-171.
[21] Hidalgo-Cantabrana C, O’Flaherty, Sarah, Barrangou R . CRISPR-based engineering of next-generation lactic acid bacteria. Current Opinion in Microbiology, 2017,37:79-87.
[22] Singleton M R, Dillingham M, Gaudier M , et al. Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks. Nature, 2004,432(7014):187-193.
[23] Lilley D M J . Structures of helical junctions in nucleic acids. Quarterly Reviews of Biophysics, 2000,33(2):109-159.
doi: 10.1017/s0033583500003590 pmid: 11131562
[24] Leenhouts K J, Kok J, Venema G . Campbell-like integration of heterologous plasmid DNA into the chromosome of Lactococcus lactis subsp. lactis. Applied and Environmental Microbiology, 1989,55(2):394-400.
[25] Leloup L, Ehrlich S D, Zagorec M , et al. Single-crossover integration in the Lactobacillus sake chromosome and insertional inactivation of the ptsI and lacL genes. Applied and Environmental Microbiology, 1997,63(6):2117-23.
[26] Lokman B C, Heerikhuisen M, Leer R J , et al. Regulation of expression of the Lactobacillus pentosus xylAB operon. Journal of Bacteriology, 1997,179(17):5391-5397.
doi: 10.1128/jb.179.17.5391-5397.1997 pmid: 9286992
[27] Nierop Groot. Masja N, Nierop Groot, Klaassens Eline, De Vos Willem M . Genome-based in silico detection of putative manganese transport systems in Lactobacillus plantarum and their genetic analysis. Microbiology, 2005,151(4):1229-1238.
[28] Fang F . Genetic tools for investigating the biology of commensal lactobacilli. Frontiers in Bioscience, 2009,14(1):3111-3127.
[29] Law J, Buist G, Haandrikman A , et al. A system to generate chromosomal mutations in Lactococcus lactis which allows fast analysis of targeted genes. Journal of Bacteriology, 1995,177(24):7011-7018.
[30] Maguin E, Duwat P, Hege T , et al. New thermosensitive plasmid for gram-positive bacteria. Journal of Bacteriology, 1992,174(17):5633-5638.
doi: 10.1128/jb.174.17.5633-5638.1992 pmid: 1324906
[31] Biswas I, Gruss A, Ehrlich S D , et al. High-efficiency gene inactivation and replacement system for gram-positive bacteria. Journal of Bacteriology, 1993,175(11):3628-3635.
[32] Neu T, Henrich B . New thermosensitive delivery vector and its use to enable nisin-controlled gene expression in Lactobacillus gasseri. Applied and Environmental Microbiology, 2003,69(3):1377-1382.
doi: 10.1128/aem.69.3.1377-1382.2003 pmid: 12620819
[33] Russell W M, Klaenhammer T R . Efficient system for directed integration into the Lactobacillus acidophilus and Lactobacillus gasseri chromosomes via homologous recombination. Applied and Environmental Microbiology, 2001,67(9):4361-4364.
[34] Antonio M B, José Luis R B, Rufino J D . Knockout of three-component regulatory systems reveals that the apparently constitutive plantaricin-production phenotype shown by Lactobacillus plantarum on solid medium is regulated via quorum sensing. International Journal of Food Microbiology, 2009,130(1):35-42.
[35] Yi X, Zhang P, Sun J , et al. Engineering wild-type robust Pediococcus acidilactici strain for high titer L- and D-lactic acid production from corn stover feedstock. Journal of Biotechnology, 2015,217:112-121.
[36] 王刚, 肖雨, 李义 , 等. ldhL-ldb0094基因敲除对保加利亚乳杆菌产L-乳酸的影响. 中国生物工程杂志, 2019,39(8):66-73.
Wang G, Xiao Y, Li Y , et al. Effect of ldhL gene knock out mutant on Lactobacillus delbrueckii subsp.blgaricus producing L-lactic acid. China Biotechnology, 2019,39(8):66-73.
[37] 张明磊, 武丽达, 王希庆 , 等. 基于pGhost4系统保加利亚乳杆菌乙酸激酶敲除载体的构建. 吉林农业大学学报, 2016,38(5):527-532.
Zhang M L, Wu L D, Wang X Q , et al. Construction of acetate kinase knockout carrier on Lactobacillus bulgaria with pGhost4 system. Journal of Jilin Agricultural University. 2016,38(5):527-532.
[38] 冯浩, 余凤云, 单凤娟 , 等. 构建食品级表达纳豆激酶的乳酸乳球菌重组菌株. 食品科学, 2012,33(21):208-212.
Feng H, Yu F Y, Shan F J , et al. Construction of a strain of recombinant Lactococcus lactis expressing food-grade nattokinase. Food Science, 2012,33(21):208-212.
[39] Guo F, Gopaul D N, Duyne G D V . Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature, 1997,389(6646):40-46.
pmid: 9288963
[40] Massad G, Mobley H L T . Mechanisms and improvement of acid resistance in lactic acid bacteria. Gene, 1994,150(1):100-104.
[41] Olivares E C. Hollis R P, Calos M P . Phage R4 integrase mediates site-specific integration in human cells. Gene, 2001,278(1):167-176.
[42] Kuhlman T E, Cox E C . Site-specific chromosomal integration of large synthetic constructs. Nucleic Acids Research, 2010,38(6), 1-10.
[43] Albert H, Dale E C, Lee E , et al. Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. The Plant Journal, 1995,7(4):649-659.
pmid: 7742860
[44] Kopertekh L, G. Jüttner, Schiemann J . Site-specific recombination induced in transgenic plants by PVX virus vector expressing bacteriophage P1 recombinase. Plant Science (Oxford), 2004,166(2):485-492.
[45] Langer S J, Paiman G A, Marshall B , et al. A genetic screen identifies novel non-compatible loxP sites. Nucleic Acids Research, 2002,30(14):3067-3077.
pmid: 12136089
[46] Campo N Daveran-Mingot M L Leenhouts K , et al. Cre-loxP recombination system for large genome rearrangements in Lactococcus lactis. Applied and Environmental Microbiology, 2002,68(5):2359-2367.
doi: 10.1128/aem.68.5.2359-2367.2002 pmid: 11976109
[47] Lambert J M, Bongers R S, Kleerebezem M . Cre-lox-based system for multiple gene deletions and selectable-marker removal in Lactobacillus plantarum. Applied and Environmental Microbiology, 2007,73(4):1126-1135.
doi: 10.1128/AEM.01473-06 pmid: 17142375
[48] Zhu Duolong, Zhao Kai, Xu Haijin , et al. Construction of thyA deficient Lactococcus lactis using the Cre-loxP recombination system. Annals of Microbiology, 2015,65(3):1659-1665.
[49] Xin Y, Guo T, Mu Y , et al, Coupling the recombineering to Cre-lox system enables simplified large-scale genome deletion in Lactobacillus casei. Microbial Cell Factories, 2018,17(1):1-11.
[50] Sharan S K, Thomason L C, Kuznetsov S G , et al. Recombineering: a homologous recombination-based method of genetic engineering. Nature Protocols, 2009,4(2):206-223.
[51] Gupta R, Shuman S, Glickman M S . RecF and RecR play critical roles in the homologous recombination and single strand annealing pathways of DNA repair in mycobacteria. Journal of Bacteriology, 2015,197(19):3121-3132.
doi: 10.1128/JB.00290-15 pmid: 26195593
[52] Liao S W, Lee J J, Ptak C P , et al. Effects of L-arabinose efflux on λ Red recombination-mediated gene knockout in multiple-antimicrobial-resistant Salmonella enterica serovar Choleraesuis. Archives of Microbiology, 2018,200(2):219-225.
[53] Thomason L C, Costantino N, Court D L . Examining a DNA replication requirement for bacteriophage λ Red- and Rac prophage recET-promoted recombination in Escherichia coli. mBio, 2016,7(5):1-10.
[54] Murphy K C . Phage recombinases and their applications. Advances in Virus Research, 2012,83(83):367-414.
[55] Poteete A R . What makes the bacteriophage Lambda Red system useful for genetic engineering: molecular mechanism and biological function. FEMS Microbiology Letters, 2001,201(1):9-14.
doi: 10.1111/j.1574-6968.2001.tb10725.x pmid: 11445160
[56] Pentao Liu, Nancy A. Jenkins, and Neal G . Copeland. Highly efficient recombineering-based method for generating conditional knockout mutations. Genome Research, 2003,13(3):476-484.
[57] Noll S, Hampp G, Bausbacher H , et al. Site-directed mutagenesis of multi-copy-number plasmids: Red/ET recombination and unique restriction site elimination. Bio-Techniques, 2009,46(7):527-533.
[58] Yang P, Wang J, Qi Q . Prophage recombinases mediated genome engineering in Lactobacillus plantarum. Microbial Cell Factories, 2015,14(1):1-11.
[59] Datta S, Costantino N, Zhou X , et al. Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages. Proceedings of the National Academy of Sciences, 2008,105(5):1626-1631.
[60] Van Pijkeren J P, Neoh K M, Sirias D , et al. Exploring optimization parameters to increase ssDNA recombineering in Lactococcus lactis and Lactobacillus reuteri. Bioengineered, 2012,3(4):209-217.
pmid: 22750793
[61] Van Pijkeren J P, Britton R A . High efficiency recombineering in lactic acid bacteria. Nucleic Acids Research, 2012,40(10):1-13.
[62] Shan Q, Wang Y, Li J , et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 2013,31(8):686-688.
pmid: 23929338
[63] Hwang W Y, Fu Y F, Reyon D , et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology, 2013,31(3):227-229.
pmid: 23360964
[64] Cobb R E, Wang Y, Zhao H . High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synthetic Biology, 2015,4(6):723-728.
doi: 10.1021/sb500351f pmid: 25458909
[65] Xiangjun H, Chunlai T, Feng W , et al. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Research, 2016,44(9):1-14.
[66] Garneau J E, Dupuis, M, Villion M, , et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 2010,468(7320):67-71.
pmid: 21048762
[67] Hsu PD, Lander ES, Zhang F . Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014,157(6):1262-1278.
doi: 10.1016/j.cell.2014.05.010 pmid: 24906146
[68] Nishimasu H, Ran F A, Hsu P D , et al. Crystal structure of Cas9 in complex with Guide RNA and target DNA. Cell, 2014,156(5):935-949.
[69] Sternberg S H, Redding S, Jinek M , et al. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature, 2014,507(7490):62-67.
doi: 10.1038/nature13011 pmid: 24476820
[70] Simon van D E, Jennelle K. J, Michiel K . Versatile Cas9-driven subpopulation selection toolbox for Lactococcus lactis. Applied and Environmental Microbiology, 2018,84(8):1-11.
[71] Horii, Takuro . Genome engineering using the CRISPR/Cas system. World Journal of Medical Genetics, 2014,4(3):69-76.
[72] Sanozky-Dawes R, Selle K, O’Flaherty S , et al. Occurrence and activity of a type II CRISPR-Cas system in Lactobacillus gasseri. Microbiology, 2015,161(9). 1752-1761.
[73] Jee-Hwan O, Van Pijkeren J P . CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Research, 2014,42(17):1-11.
[74] Jang Y J, Seo S O, Kim S A , et al. Elimination of the cryptic plasmid in Leuconostoc citreum by CRISPR/Cas9 system. Journal of Biotechnology, 2017, ( 251):151-55.
[75] Song X, Huang H, Xiong Z , et al. CRISPR-Cas9D10A nickase-assisted genome editing in Lactobacillus casei . Applied and Environmental Microbiology, 2017,83(22):1-13.
[76] Crawley A B, Henriksen E D, Emily S , et al. Characterizing the activity of abundant, diverse and active CRISPR-Cas systems in lactobacilli. Scientific Reports, 2018,8(1):1-12.
[1] 武秀知,王宏杰,祖尧. 斑马鱼hoxa1a基因调控颅面骨骼发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(9): 20-26.
[2] 赵霞,朱哲,祖尧. 斑马鱼tbx2b调控心脏房室间隔发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(8): 1-7.
[3] 毕博,张宇,赵慧. 酵母杂交系统在CRISPR/Cas9基因编辑系统脱靶率研究中的应用*[J]. 中国生物工程杂志, 2021, 41(6): 27-37.
[4] 胡暄,王松,于学玲,张晓鹏. 不稳定EGFP细胞模型的构建及其在基因编辑体系评价中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 17-26.
[5] 王艳梅,寇航,马梅,申玉玉,赵宝顶,路福平,黎明. 利用CRISPR-Cas9技术失活黑曲霉中果胶酶基因及突变株性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 35-44.
[6] 冷燕,孙康泰,刘倩倩,蒲阿庆,李翔,万向元,魏珣. 全球基因编辑作物监管趋势研究[J]. 中国生物工程杂志, 2021, 41(12): 24-29.
[7] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[8] 郭洋,陈艳娟,刘怡辰,王海杰,王成稷,王珏,万颖寒,周宇,奚骏,沈如凌. Pd-1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2021, 41(10): 1-11.
[9] 邓廷山,武国干,孙宇,唐雪明. 苯乳酸生物合成的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 62-68.
[10] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[11] 黄胜, 严启滔, 熊仕琳, 彭弈骐, 赵蕊. 基于CRISPR/Cas9-SAM系统CHD5基因过表达慢病毒载体的构建及对膀胱癌T24细胞增殖,迁移和侵袭能力的影响 *[J]. 中国生物工程杂志, 2020, 40(3): 1-8.
[12] 雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.
[13] 王玥,牟彦双,刘忠华. 基于CRISPR/Cas系统的单碱基编辑技术研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 58-66.
[14] 王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.
[15] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.