Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (10): 1-11    DOI: 10.13523/j.cb.2106013
研究报告     
Pd-1基因敲除小鼠构建及初步表型验证
郭洋1,陈艳娟1,刘怡辰1,王海杰1,王成稷1,王珏1,万颖寒1,周宇2,奚骏2,沈如凌1,*()
1 上海实验动物研究中心 上海 201203
2 上海市模式动物工程技术研究中心 上海 201318
Pd-1 Gene Knockout Mouse Model Construction and Preliminary Phenotype Verification
GUO Yang1,CHEN Yan-juan1,LIU Yi-chen1,WANG Hai-jie1,WANG Cheng-ji1,WANG Jue1,WAN Ying-han1,ZHOU Yu2,XI Jun2,SHEN Ru-ling1,*()
1 Shanghai Laboratory Animal Research Center, Shanghai 201203, China
2 Shanghai Model Organisms Center Inc., Shanghai 201318, China
 全文: PDF(2622 KB)   HTML
摘要:

目的:细胞程序性死亡蛋白(programmed death ligand-1,PD-1)是机体T细胞的免疫检查点,也是肿瘤治疗的重要靶点。采用CRISPR/Cas9技术,利用非同源重组修复引入突变的方式,使基因蛋白读码框移码造成PD-1功能缺失,建立Pd-1基因敲除小鼠模型,为深入探究Pd-1基因功能及作用机制提供基础。方法:针对Pd-1基因2-4号外显子设计并合成2对sgRNA片段,与编码Cas9片段共同体外转录,通过受精卵显微注射方法将两者mRNA混合注射到C57BL/6小鼠受精卵中,经PCR产物测序鉴定获得F0代小鼠,之后与野生型C57BL/6小鼠交配获得F1代杂合子小鼠,F1代小鼠自交即获得F2代纯合子小鼠品系(Pd-1-/-)。刀豆蛋白(concanavalin A,ConA)刺激Pd-1-/-小鼠后,通过实时荧光定量PCR和流式细胞技术在mRNA和蛋白水平上分别检测Pd-1-/-小鼠中Pd-1基因在转录和翻译过程中的表达情况,并通过ELISA方法检测Pd-1-/-小鼠血清中IL-6、IFN-γ、IL12/IL23及TNF-α等因子的表达水平,初步分析Pd-1通路在T细胞反应调控中的作用机制及对免疫刺激的响应情况。结果:PCR及测序结果表明在小鼠基因组中Pd-1基因2-4号外显子被成功敲除;Real-Time PCR实验和流式检测结果显示:与野生型小鼠相比,Pd-1-/-小鼠脾、肠系膜淋巴结、胸腺和血液各组织中Pd-1表达水平均显著降低;双抗夹心ELISA测定结果显示:Pd-1敲除后经ConA刺激,血清中IL-6和IFN-γ表达上调。结论:成功构建Pd-1基因敲除小鼠模型。Pd-1缺失能够上调IL-6和IFN-γ对ConA刺激的响应,增加ConA引起的炎症反应,为Pd-1的体内基因功能研究提供了新的小鼠模型和研究思路。

关键词: Pd-1PD-L1CRISPR/Cas9IL-6IFN-γ    
Abstract:

Objective: Programmed cell death protein (PD-1) is a T cell immune checkpoint and an important target for tumor therapy. This article used CRISPR/Cas9 technology to repair the introduced mutations by non-homologous recombination, causing the frame shift of the gene protein reading frame and the loss of PD-1 function. Estabilishment of Pd-1 gene knockout mouse model provides the basis for in-depth exploration of Pd-1 gene function and mechanism. Methods: We designed and synthesized 2 pairs of sgRNA fragments for exons 2-4 of the Pd-1 gene, and transcribed them in vitro together with the Cas9 fragments encoding them. The two mRNAs were mixed into C57BL/6 mouse fertilized eggs by microinjection. F0 generation mice were obtained by PCR product sequencing and then mated with wild-type C57BL/6 mice to obtain F1 generation heterozygous mice. F1 generation mice were intercoursed to obtain F2 generation homozygous mouse strains (Pd-1-/-). After it was stimulated with concanavalin (ConA), PD-1 in Pd-1-/- mice was detected by Real-Time fluorescent quantitative PCR and flow cytometry at the mRNA and protein levels, respectively. The expression levels of IL-6, IFN-γ, IL12/IL23 and TNF-α in the serum of Pd-1-/- mice were detected by the ELISA method, and the mechanism of Pd-1 pathway in the regulation of T cell response and its countermeasures were preliminarily analyzed. Results: PCR and sequencing results showed that exons 2-4 of the Pd-1 gene in the mouse genome were successfully knocked out; Real-Time PCR experiments and flow cytometry results showed that the expression of PD-1 was significantly reduced in Pd-1-/- spleen, mesenteric lymph nodes, thymus and blood tissues compared with wild-type mice; the double-antibody sandwich ELISA test results showed that the expression of serum IL-6 and IFN-γ is up-regulated stimulated by ConA after Pd-1 gene was knocked out. Conclusion: The Pd-1 gene knockout mouse model has been successfully constructed. Preliminary analysis shows that Pd-1 deletion can upregulate the response of IL-6 and IFN-γ to ConA stimulation, increase the inflammatory response caused by ConA, and provide a new mouse model for the study of Pd-1 in vivo gene function and research ideas.

Key words: PD-1    PD-L1    CRISPR/Cas9    IL-6    IFN-γ
收稿日期: 2021-06-08 出版日期: 2021-11-08
ZTFLH:  Q819  
通讯作者: 沈如凌     E-mail: shenruling@slarc.org.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郭洋
陈艳娟
刘怡辰
王海杰
王成稷
王珏
万颖寒
周宇
奚骏
沈如凌

引用本文:

郭洋,陈艳娟,刘怡辰,王海杰,王成稷,王珏,万颖寒,周宇,奚骏,沈如凌. Pd-1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2021, 41(10): 1-11.

GUO Yang,CHEN Yan-juan,LIU Yi-chen,WANG Hai-jie,WANG Cheng-ji,WANG Jue,WAN Ying-han,ZHOU Yu,XI Jun,SHEN Ru-ling. Pd-1 Gene Knockout Mouse Model Construction and Preliminary Phenotype Verification. China Biotechnology, 2021, 41(10): 1-11.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2106013        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I10/1

sgRNA靶序列 序列信息(5'-3')
sgRNA 1 GTAAGCAGTTCCCCCTACCT AGG
sgRNA 2 GCATAACTGAACCTAGGGTC TGG
sgRNA 3 GGAACAACAGGATATGGCTC TGG
sgRNA 4 GAACAACAGGATATGGCTCT GGG
表1  sgRNA序列信息
序列 序列信息(5'-3')
sgRNA1正义链 CACCGGACATCTTATTCCACATATC
sgRNA1反义链 AAACGATATGTGGAATAAGATGTCC
sgRNA2正义链 CACCGCATACTCCTAATTATTAAGC
sgRNA2反义链 AAACGCTTAATAATTAGGAGTATGC
表2  寡核苷酸链序列信息
引物 序列信息(5'-3')
P1 CAGGCCTGGAACATCTTGA
P2 TGGCCCAGTTTCTATCGTTA
表3  引物序列信息
Gene 上游序列信息(5'-3') 下游序列信息(5'-3')
Pd-1 ATGGCACTGTTCTTCTCCTG AGCTCAGATCTATGTTCTTGGTTG
β-actin CCTGTATGCCTCTGGTCGTA CCATCTCCTGCTCGAAGTCT
表4  RT-PCR引物序列
图1  Pd-1基因敲除小鼠构建策略
图2  Pd-1-/-基因型鉴定
类型 序列信息(5'-3') 突变情况
Pd-1-/- aggtagagacatcttcggggaaaatatcccaaagtctcaaaggacagaatagtagcctccagaccctaggttcagttatgctgaaggaagagccctgcttgttggaggttac
ttattcacaacctacaagaagctacaagctcctag…(-1 691bp)…gccatatcctgttgttcctcccagcagctgaccccactgtgtgtacccctgtcgtgtccaac
gtggtcacgacttgttttcttc
-1 691bp
WT aggtagagacatcttcggggaaaatatcccaaagtctcaaaggacagaatagtagcctccagaccctaggttcagttatgctgaaggaagagccctgcttgttggaggttac
ttattcacaacctacaagaagctacaagctcctaggtagggggaactgcttacgatattctgccctggaatgggtctgagagcacattcctctccagggggttcagaaaagat
gtcagaaagggtgta……ccaggccacccccaggtcttggtacaggtagagagaccatggggcctacagggctagagcctggagagcccagctcccattttctaccag
gcccccagagccatatcctgttgttcctcccagcagctgaccccactgtgtgtacccctgtcgtgtccaacgtggtcacgacttgttttcttc
野生型
表5  Pd-1-/-和WT小鼠的序列信息
图3  Real-Time PCR检测PD-1 mRNA表达情况
图4  流式检测ConA刺激前后PD-1 在CD4+ T细胞和CD8+ T细胞上表达情况
图5  ConA刺激前流式检测PD-1表达情况散点示意图
图6  经ConA刺激后流式检测PD-1表达情况散点示意图
图7  ConA刺激前后Pd-1-/-小鼠血清中IL-6、IFN-γ、IL12/IL23和TNF-α的表达情况
[1] Yamazaki T, Akiba H, Iwai H, et al. Expression of programmed death 1 ligands by murine T cells and APC. Journal of Immunology, 2002, 169(10): 5538-5545.
doi: 10.4049/jimmunol.169.10.5538
[2] Nishimura H, Agata Y, Kawasaki A, et al. Developmentally regulated expression of the PD-1 protein on the surface of double-negative(CD4-CD8-) thymocytes. International Immunology, 1996, 8(5): 773-780.
pmid: 8671666
[3] Nishimura H, Honjo T, Minato N. Facilitation of β selection and modification of positive selection in the Thymus of Pd-1-deficient mice. Journal of Experimental Medicine, 2000, 191(5): 891-898.
doi: 10.1084/jem.191.5.891
[4] Zhang X W, Schwartz J C D, Guo X L, et al. Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity, 2004, 20(3): 337-347.
doi: 10.1016/S1074-7613(04)00051-2
[5] Ahmadzadeh M, Johnson L A, Heemskerk B, et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood, 2009, 114(8): 1537-1544.
doi: 10.1182/blood-2008-12-195792 pmid: 19423728
[6] Latchman Y, Wood C R, Chernova T, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nature Immunology, 2001, 2(3): 261-268.
pmid: 11224527
[7] Keir M E, Butte M J, Freeman G J, et al. PD-1 and its ligands in tolerance and immunity. Annual Review of Immunology, 2008, 26: 677-704.
doi: 10.1146/immunol.2008.26.issue-1
[8] Cho H Y, Choi E K, Lee S W, et al. Programmed death-1 receptor negatively regulates LPS-mediated IL-12 production and differentiation of murine macrophage RAW264.7 cells. Immunology Letters, 2009, 127(1): 39-47.
doi: 10.1016/j.imlet.2009.08.011
[9] Said E A, Dupuy F P, Trautmann L, et al. Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection. Nature Medicine, 2010, 16(4): 452-459.
doi: 10.1038/nm.2106
[10] Xiao G, Deng A Q, Liu H F, et al. Activator protein 1 suppresses antitumor T-cell function via the induction of programmed death 1. PNAS, 2012, 109(38): 15419-15424.
doi: 10.1073/pnas.1206370109
[11] Salmaninejad A, Khoramshahi V, Azani A, et al. PD-1 and cancer: molecular mechanisms and polymorphisms. Immunogenetics, 2018, 70(2): 73-86.
doi: 10.1007/s00251-017-1015-5 pmid: 28642997
[12] Okazaki T, Tanaka Y, Nishio R, et al. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nature Medicine, 2003, 9(12): 1477-1483.
pmid: 14595408
[13] Wang J, Okazaki I M, Yoshida T, et al. PD-1 deficiency results in the development of fatal myocarditis in MRL mice. International Immunology, 2010, 22(6): 443-452.
doi: 10.1093/intimm/dxq026
[14] Kasprowicz V, Schulze zur Wiesch J, Kuntzen T, et al. High level of PD-1 expression on hepatitis C virus (HCV)-specific CD8+ and CD4+ T cells during acute HCV infection, irrespective of clinical outcome. Journal of Virology, 2008, 82(6): 3154-3160.
pmid: 18160439
[15] Nakamoto N, Kaplan D E, Coleclough J, et al. Functional restoration of HCV-specific CD8 T cells by PD-1 blockade is defined by PD-1 expression and compartmentalization. Gastroenterology, 2008, 134(7): 1927-37, 1937.e1-2.
doi: 10.1053/j.gastro.2008.02.033
[16] Borkner L, Kaiser A, Kasteele W, et al. RNA interference targeting programmed death receptor-1 improves immune functions of tumor-specific T cells. Cancer Immunology, Immunotherapy, 2010, 59(8): 1173-1183.
doi: 10.1007/s00262-010-0842-0
[17] Hino R, Kabashima K, Kato Y, et al. Tumor cell expression of programmed cell death-1 ligand 1 is a prognostic factor for malignant melanoma. Cancer, 2010, 116(7): 1757-1766.
doi: 10.1002/cncr.v116:7
[18] Iwai Y, Hamanishi J, Chamoto K, et al. Cancer immunotherapies targeting the PD-1 signaling pathway. Journal of Biomedical Science, 2017, 24(1): 26.
doi: 10.1186/s12929-017-0329-9
[19] 万颖寒, 慈磊, 王珏, 等. 淋巴细胞活化基因-3敲除(Lag-3-/-)小鼠构建及初步表型分析. 中国实验动物学报, 2020, 28(1): 49-57.
Wan Y H, Ci L, Wang J, et al. Construction and preliminary phenotypic analysis of Lag-3-/- mice. Acta Laboratorium Animalis Scientia Sinica, 2020, 28(1): 49-57.
[20] Hoejberg L, Bastholt L, Schmidt H. Interleukin-6 and melanoma. Melanoma Research, 2012, 22(5): 327-333.
doi: 10.1097/CMR.0b013e3283543d72 pmid: 22713796
[21] Wang F, Xu J, Zhu Q, et al. Downregulation of IFNG in CD4(+) T cells in lung cancer through hypermethylation: a possible mechanism of tumor-induced immunosuppression. PLoS One, 2013, 8(11): e79064.
doi: 10.1371/journal.pone.0079064
[22] Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harbor Perspectives in Biology, 2014, 6(10): a016295.
doi: 10.1101/cshperspect.a016295
[23] Rossi J F, Lu Z Y, Jourdan M, et al. Interleukin-6 as a therapeutic target. Clinical Cancer Research, 2015, 21(6): 1248-1257.
doi: 10.1158/1078-0432.CCR-14-2291
[24] Tsukamoto H, Fujieda K, Hirayama M, et al. Soluble IL6R expressed by myeloid cells reduces tumor-specific Th1 differentiation and drives tumor progression. Cancer Research, 2017, 77(9): 2279-2291.
doi: 10.1158/0008-5472.CAN-16-2446 pmid: 28235765
[25] Rotz S J, Leino D, Szabo S, et al. Severe cytokine release syndrome in a patient receiving PD-1-directed therapy. Pediatric Blood & Cancer, 2017, 64(12): e26642.
doi: 10.1002/pbc.26642
[26] Grupp S A, Kalos M, Barrett D, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. The New England Journal of Medicine, 2013, 368(16): 1509-1518.
doi: 10.1056/NEJMoa1215134
[27] Tanaka R, Okiyama N, Okune M, et al. Serum level of interleukin-6 is increased in nivolumab-associated psoriasiform dermatitis and tumor necrosis factor-α is a biomarker of nivolumab recativity. Journal of Dermatological Science, 2017, 86(1): 71-73.
doi: S0923-1811(16)31098-2 pmid: 28069323
[28] Leplina O, Smetanenko E, Tikhonova M, et al. Binding of the placental growth factor to VEGF receptor type 1 modulates human T cell functions. Journal of Leukocyte Biology, 2020, 108(3): 1013-1024.
doi: 10.1002/jlb.v108.3
[29] Lee S J, Jang B C, Lee S W, et al. Interferon regulatory factor-1 is prerequisite to the constitutive expression and IFN-γ-induced upregulation of B7-H1 (CD274). FEBS Letters, 2006, 580(3): 755-762.
doi: 10.1016/j.febslet.2005.12.093
[30] Oestreich K J, Yoon H, Ahmed R, et al. NFATc1 regulates PD-1 expression upon T cell activation. Journal of Immunology, 2008, 181(7): 4832-4839.
pmid: 18802087
[31] Melssen M, Slingluff C L Jr. Vaccines targeting helper T cells for cancer immunotherapy. Current Opinion in Immunology, 2017, 47: 85-92.
doi: S0952-7915(17)30050-X pmid: 28755541
[32] Spitzer M H, Carmi Y, Reticker-Flynn N E, et al. Systemic immunity is required for effective cancer immunotherapy. Cell, 2017, 168(3): 487-502.e15.
doi: 10.1016/j.cell.2016.12.022
[33] Li J, Jie H B, Lei Y, et al. PD-1/SHP-2 inhibits Tc1/Th1 phenotypic responses and the activation of T cells in the tumor microenvironment. Cancer Research, 2015, 75(3): 508-518.
doi: 10.1158/0008-5472.CAN-14-1215
[34] McAlees J W, Lajoie S, Dienger K, et al. Differential control of CD4(+) T-cell subsets by the PD-1/PD-L1 axis in a mouse model of allergic asthma. European Journal of Immunology, 2015, 45(4): 1019-1029.
doi: 10.1002/eji.201444778 pmid: 25630305
[35] Karachaliou N, Gonzalez-Cao M, Crespo G, et al. Interferon gamma, an important marker of response to immune checkpoint blockade in non-small cell lung cancer and melanoma patients. Therapeutic Advances in Medical Oncology, 2018, 10: 1758834017749748.
[36] Kochupurakkal B S, Wang Z C, Hua T, et al. RelA-induced interferon response negatively regulates proliferation. PLoS One, 2015, 10(10): e0140243.
doi: 10.1371/journal.pone.0140243
[37] Gordon S R, Maute R L, Dulken B W, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature, 2017, 545(7655): 495-499.
doi: 10.1038/nature22396
[1] 武秀知,王宏杰,祖尧. 斑马鱼hoxa1a基因调控颅面骨骼发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(9): 20-26.
[2] 赵梦泽,李凤智,王鹏银,李剑,徐寒梅. PD-L1和VEGF双靶点联合阻断治疗的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 71-77.
[3] 毕博,张宇,赵慧. 酵母杂交系统在CRISPR/Cas9基因编辑系统脱靶率研究中的应用*[J]. 中国生物工程杂志, 2021, 41(6): 27-37.
[4] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[5] 黄胜, 严启滔, 熊仕琳, 彭弈骐, 赵蕊. 基于CRISPR/Cas9-SAM系统CHD5基因过表达慢病毒载体的构建及对膀胱癌T24细胞增殖,迁移和侵袭能力的影响 *[J]. 中国生物工程杂志, 2020, 40(3): 1-8.
[6] 王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.
[7] 雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.
[8] 王玥,牟彦双,刘忠华. 基于CRISPR/Cas系统的单碱基编辑技术研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 58-66.
[9] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.
[10] 王志敏,毕美玉,贺佳福,任炳旭,刘东军. CRISPR/Cas9系统的发展及其在动物基因编辑中的应用 *[J]. 中国生物工程杂志, 2020, 40(10): 43-50.
[11] 吝建华,韩君,徐寒梅. PD-1/PD-L1免疫检查点抗体药物制剂稳定性开发[J]. 中国生物工程杂志, 2020, 40(10): 35-42.
[12] 菅璐,黄映辉,梁天亚,王利敏,马洪涛,张婷,李丹阳,王明连. 利用CRISPR/Cas9技术建立敲除JAK2基因K562细胞系 *[J]. 中国生物工程杂志, 2019, 39(7): 39-47.
[13] 陈露,黄茂,彭棋,赵佳丽,谢佳卿,林璐,户丽君,黄逸云,胡琴,周兰. S100A6通过巨噬细胞促结直肠癌细胞增殖的作用及机制 *[J]. 中国生物工程杂志, 2019, 39(4): 1-7.
[14] 周松涛,陈蕴,龚笑海,金坚,李华钟. 利用CRISPR/Cas9技术构建稳定表达人白蛋白基因的中国仓鼠卵巢细胞系 *[J]. 中国生物工程杂志, 2019, 39(4): 52-59.
[15] 万颖寒,慈磊,王珏,龚慧,李俊,董茹,孙瑞林,费俭,沈如凌. PD-L1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2019, 39(12): 42-49.