Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (8): 30-37    DOI: 10.13523/j.cb.2304026
    
Application and Prospects of Lung Organoid Models in the Study of Infectious Lung Diseases
SHI Jin1,LIU Ke2,DING Jun-ying2,**()
1 Department of Clinical Laboratory, Beijing Hospital of Traditional Chinese Medicine (TCM), Capital Medical University, Beijing 100010, China
2 Beijing Key Laboratory of Basic Research with TCM on Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of TCM, Capital Medical University, Beijing 100010, China
Download: HTML   PDF(864KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Lung is an important target organ for infection and injury by viruses, bacteria and other pathogens. In recent years, the novel coronavirus epidemic has made us realize that infectious pulmonary diseases pose a serious threat to human health, even life. Due to the urgency of the research on the pathogenesis and prevention mechanism of pulmonary diseases, lung organoids are increasingly becoming effective tools for research in this field due to their characteristics such as accurate simulation, high applicability and no ethical concerns. On the basis of tracing its development, this paper reviews the construction and application of lung organoid models in different infectious pulmonary diseases, and anticipates the future development prospects of the models.



Key wordsPluripotent stem cells      Lung organoids      Infectious pulmonary disease      Pathogen     
Received: 13 April 2023      Published: 05 September 2023
ZTFLH:  R-33  
Cite this article:

SHI Jin, LIU Ke, DING Jun-ying. Application and Prospects of Lung Organoid Models in the Study of Infectious Lung Diseases. China Biotechnology, 2023, 43(8): 30-37.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2304026     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I8/30

Fig.1 The source and construction of lung organoids
Fig.2 Application of pulmonary organoid model in infectious pulmonary diseases
[1]   Gruzieva O, Jeong A, He S Z, et al. Air pollution, metabolites and respiratory health across the life-course. European Respiratory Review: an Official Journal of the European Respiratory Society, 2022, 31(165): 220038.
doi: 10.1183/16000617.0038-2022
[2]   Corrò C, Novellasdemunt L, Li V S W. A brief history of organoids. American Journal of Physiology Cell Physiology, 2020, 319(1): C151-C165.
doi: 10.1152/ajpcell.00120.2020
[3]   Calvert B A, Ryan Firth A L. Application of iPSC to modelling of respiratory diseases. Advances in Experimental Medicine and Biology, 2020, 1237: 1-16.
doi: 10.1007/5584_2019_430 pmid: 31468358
[4]   Chen J Y, Na F F. Organoid technology and applications in lung diseases: models, mechanism research and therapy opportunities. Frontiers in Bioengineering and Biotechnology, 2022, 10: 1066869.
doi: 10.3389/fbioe.2022.1066869
[5]   Shannon J M, Mason R J, Jennings S D. Functional differentiation of alveolar type II epithelial cells in vitro: effects of cell shape, cell-matrix interactions and cell-cell interactions. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1987, 931(2): 143-156.
doi: 10.1016/0167-4889(87)90200-X
[6]   Köpf-Maier P, Zimmermann B. Organoid reorganization of human tumors under in vitro conditions. Cell and Tissue Research, 1991, 264(3): 563-576.
pmid: 1868523
[7]   Rock J R, Onaitis M W, Rawlins E L, et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(31): 12771-12775.
[8]   Barkauskas C E, Cronce M J, Rackley C R, et al. Type 2 alveolar cells are stem cells in adult lung. The Journal of Clinical Investigation, 2013, 123(7): 3025-3036.
doi: 10.1172/JCI68782
[9]   Wong A P, Bear C E, Chin S, et al. Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nature Biotechnology, 2012, 30(9): 876-882.
pmid: 22922672
[10]   Dye B R, Hill D R, Ferguson M A H, et al. In vitro generation of human pluripotent stem cell derived lung organoids. eLife, 2015, 4: e05098.
doi: 10.7554/eLife.05098
[11]   Tan Q, Choi K M, Sicard D, et al. Human airway organoid engineering as a step toward lung regeneration and disease modeling. Biomaterials, 2017, 113: 118-132.
doi: S0142-9612(16)30596-8 pmid: 27815996
[12]   李晓娜, 齐先梅, 张田甜, 等. 类器官培养技术在呼吸系统疾病中的应用. 中国病理生理杂志, 2023, 39(2):366-372.
[12]   Li X N, Qi X M, Zhang T T, et al. Application of organoid culture technology in respiratory diseases. Chinese Journal of Pathophysiology, 2023, 39(2):366-372.
[13]   Hild M, Jaffe A B. Production of 3-D airway organoids from primary human airway basal cells and their use in high-throughput screening. Current Protocols in Stem Cell Biology, 2016, 37(1): IE.9.1-IE.9.15.
[14]   杨换连, 邱飞, 王国权, 等. 肿瘤类器官在药物筛选和个性化用药中的研究进展. 中国生物工程杂志, 2022, 42(6): 47-53.
[14]   Yang H L, Qiu F, Wang G Q, et al. Progress in the research and application of tumor organoids in drug screening and personalized drug treatment. China Biotechnology, 2022, 42(6): 47-53.
[15]   Sachs N, Papaspyropoulos A, Zomer-van Ommen D D, et al. Long-term expanding human airway organoids for disease modeling. The EMBO Journal, 2019, 38(4): e100300.
doi: 10.15252/embj.2018100300
[16]   Miller A J, Dye B R, Ferrer-Torres D, et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nature Protocols, 2019, 14(2): 518-540.
doi: 10.1038/s41596-018-0104-8
[17]   Han Y L, Duan X H, Yang L L, et al. Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature, 2021, 589(7841): 270-275.
doi: 10.1038/s41586-020-2901-9
[18]   González Aparicio L J, López C B, Felt S A. A virus is a community: diversity within negative-sense RNA virus populations. Microbiology and Molecular Biology Reviews: MMBR, 2022, 86(3): e0008621.
[19]   Han Y L, Yang L L, Lacko L A, et al. Human organoid models to study SARS-CoV-2 infection. Nature Methods, 2022, 19(4): 418-428.
doi: 10.1038/s41592-022-01453-y pmid: 35396481
[20]   Salahudeen A A, Choi S S, Rustagi A, et al. Progenitor identification and SARS-CoV-2 infection in human distal lung organoids. Nature, 2020, 588(7839): 670-675.
doi: 10.1038/s41586-020-3014-1
[21]   Mannar D, Saville J W, Zhu X, et al. SARS-CoV-2 Omicron variant: Antibody evasion and cryo-EM structure of spike protein-ACE2 complex. Science, 2022, 375(6582): 760-764.
doi: 10.1126/science.abn7760 pmid: 35050643
[22]   Huang J, Hume A J, Abo K M, et al. SARS-CoV-2 infection of pluripotent stem cell-derived human lung alveolar type 2 cells elicits a rapid epithelial-intrinsic inflammatory response. Cell Stem Cell, 2020, 27(6): 962-973.e7.
doi: 10.1016/j.stem.2020.09.013 pmid: 32979316
[23]   Ampomah P B, Lim L H K. Influenza A virus-induced apoptosis and virus propagation. Apoptosis, 2020, 25(1): 1-11.
doi: 10.1007/s10495-019-01575-3
[24]   Hamilton B S, Whittaker G R. Cleavage activation of human-adapted influenza virus subtypes by kallikrein-related peptidases 5 and 12. Journal of Biological Chemistry, 2013, 288(24): 17399-17407.
doi: 10.1074/jbc.M112.440362 pmid: 23612974
[25]   Wang D, Li C, Chiu M C, et al. SPINK 6 inhibits human airway serine proteases and restricts influenza virus activation. EMBO Molecular Medicine, 2022, 14(1): e14485.
doi: 10.15252/emmm.202114485
[26]   Salgueiro L, Kummer S, Sonntag-Buck V, et al. Generation of human lung organoid cultures from healthy and tumor tissue to study infectious diseases. Journal of Virology, 2022, 96(7): e0009822.
[27]   Zhao L, Yan Y Z, Dai Q S, et al. Development of novel anti-influenza thiazolides with relatively broad-spectrum antiviral potentials. Antimicrobial Agents and Chemotherapy, 2020, 64(7): e00222-20.
[28]   田树凤, 邓继岿. 儿童副流感病毒感染的临床诊治进展. 中国实用儿科杂志, 2020, 35(11): 905-908.
[28]   Tian S F, Deng J K. Progress in clinical diagnosis and treatment of parainfluenza virus infection in children. Chinese Journal of Practical Pediatrics, 2020, 35(11): 905-908.
[29]   Iketani S, Shean R C, Ferren M, et al. Viral entry properties required for fitness in humans are lost through rapid genomic change during viral isolation. mBio, 2018, 9(4): e00898-18.
[30]   Porotto M, Ferren M, Chen Y W, et al. Authentic modeling of human respiratory virus infection in human pluripotent stem cell-derived lung organoids. mBio, 2019, 10(3): e00723-19.
[31]   Collins P L, Fearns R, Graham B S. Respiratory syncytial virus: virology, reverse genetics, and pathogenesis of disease. Current Topics in Microbiology and Immunology, 2013, 372: 3-38.
doi: 10.1007/978-3-642-38919-1_1 pmid: 24362682
[32]   Chen Y W, Huang S X, de Carvalho A L R T, et al. A three-dimensional model of human lung development and disease from pluripotent stem cells. Nature Cell Biology, 2017, 19(5): 542-549.
doi: 10.1038/ncb3510
[33]   Gellatly S L, Hancock R E W. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathogens and Disease, 2013, 67(3): 159-173.
doi: 10.1111/2049-632X.12033 pmid: 23620179
[34]   杨晓庆, 孙平, 薛寒, 等. 铜绿假单胞菌Ⅲ型分泌系统分泌蛋白ExoU与耐药性的关系研究. 中国临床药理学杂志, 2022, 38(19): 2324-2328.
[34]   Yang X Q, Sun P, Xue H, et al. Investigation of the relationship between secretry protein ExoU of Pseudomonas aeruginosa type 3 secretion system and drug resistance. The Chinese Journal of Clinical Pharmacology, 2022, 38(19): 2324-2328.
[35]   Bagayoko S, Leon-Icaza S A, Pinilla M, et al. Host phospholipid peroxidation fuels ExoU-dependent cell necrosis and supports Pseudomonas aeruginosa-driven pathology. PLoS Pathogens, 2021, 17(9): e1009927.
[36]   Tang M X, Liao S M, Qu J, et al. Evaluating bacterial pathogenesis using a model of human airway organoids infected with Pseudomonas aeruginosa biofilms. Microbiology Spectrum, 2022, 10(6): e0240822.
[37]   Ali M, LaCanna R, Lian Z R, et al. Transcriptional responses to injury of regenerative lung alveolar epithelium. iScience, 2022, 25(8): 104843.
doi: 10.1016/j.isci.2022.104843
[38]   Sempere J, Rossi S A, Chamorro-Herrero I, et al. Minilungs from human embryonic stem cells to study the interaction of Streptococcus pneumoniae with the respiratory tract. Microbiology Spectrum, 2022, 10(3): e45322.
[39]   Domínguez J, Boeree M J, Cambau E, et al. Clinical implications of molecular drug resistance testing for Mycobacterium tuberculosis: a 2023 TBnet/RESIST-TB consensus statement. The Lancet Infectious Diseases, 2023, 23(4): e122-e137.
doi: 10.1016/S1473-3099(22)00875-1
[40]   杨天立, 王向东, 白楠, 等. 肺类器官:研究人类肺部发育和疾病的新途径. 解放军医学院学报, 2021, 42(6):658-664.
[40]   Yang T L, Wang X D, Bai N, et al. Lung organoids: a new way to study human lung development and diseases. Academic Journal of Chinese Pla Medical School, 2021, 42(6):658-664.
[41]   Iakobachvili N, Leon-Icaza S A, Knoops K, et al. Mycobacteria-host interactions in human bronchiolar airway organoids. Molecular Microbiology, 2022, 117(3): 682-692.
doi: 10.1111/mmi.v117.3
[42]   Pagán A J, Ramakrishnan L. The formation and function of granulomas. Annual Review of Immunology, 2018, 36: 639-665.
doi: 10.1146/annurev-immunol-032712-100022 pmid: 29400999
[43]   Elkington P, Lerm M, Kapoor N, et al. In vitro granuloma models of tuberculosis: potential and challenges. The Journal of Infectious Diseases, 2019, 219(12): 1858-1866.
doi: 10.1093/infdis/jiz020
[44]   Heo I, Dutta D, Schaefer D A, et al. Modelling Cryptosporidium infection in human small intestinal and lung organoids. Nature Microbiology, 2018, 3(7): 814-823.
doi: 10.1038/s41564-018-0177-8
[45]   俞东红, 曹华, 王心睿. 类器官的研究进展及应用. 生物工程学报, 2021, 37(11): 3961-3974.
[45]   Yu D H, Cao H, Wang X R. Advances and applications of organoids: a review. Chinese Journal of Biotechnology, 2021, 37(11): 3961-3974.
[1] ZHU Si-ying, YANG Yang, LI Peng-dong, XUE Yan-ting, SHE Qin, QI Ling, ZHAO Guo-jun, LIAO Bao-jian. MicroRNA Cluster 290-295 Enhances Somatic Cell Reprogramming[J]. China Biotechnology, 2023, 43(4): 1-9.
[2] DONG Hui-xia, HOU Zhan-ming. Folprp4 Gene Involved in the Conidiogenesis and Mycelial Growth in Fusarium oxysporum f. sp. lini[J]. China Biotechnology, 2022, 42(3): 13-26.
[3] QIAN Yu,DING Xiao-yu,LIU Zhi-qiang,YUAN Zeng-qiang. An Efficient Monoclonal Establishment Method of Genetically Modified Human Pluripotent Stem Cells[J]. China Biotechnology, 2021, 41(8): 33-41.
[4] XU Wen-juan,SONG Dan,CHEN Dan,LONG Hui,CHEN Yu-bao,LONG Feng. Research Progress of Pathogen Detection Technologies Based on CRISPR/CAS Biosensor[J]. China Biotechnology, 2021, 41(8): 67-74.
[5] YUAN Bo-xin,WU Hao,YAN Chun-xiao,LU Juan-e,WEI Zhen-ping,QIAO Jian-jun,RUAN Hai-hua. Progress of Effector Proteins of Pathogenic Bacteria Invading Host Cell Nucleus[J]. China Biotechnology, 2021, 41(7): 81-90.
[6] MA Qiao-ni,WANG Meng,ZHU Xing-quan. Research Advances in Recombinase-aided Amplification Technology and Its Application in Rapid Detection of Pathogenic Microorganisms[J]. China Biotechnology, 2021, 41(6): 45-49.
[7] ZHOU Zi-hui,LIU Xiao-xian,HUANG Hao,XIAO Rui,QI Ke-zong,WANG Sheng-qi. Application of Surface-enhanced Raman Scattering Based onNano-signal Tags in Pathogen Detection[J]. China Biotechnology, 2021, 41(2/3): 70-77.
[8] JIA Xiao-mei,NI Li,LUO Hong-yan,DING Hong-lei,WANG Hao-ju. Research Progress in Pasteurella Multocida Detection Technology[J]. China Biotechnology, 2020, 40(8): 49-54.
[9] ZHANG Ling-mei,NG Hao-ju. Research Progress in Streptococcus suis Detection Technology[J]. China Biotechnology, 2020, 40(4): 84-91.
[10] ZHU Xiao-li,HUANG Cui,MA Li-li,ZHANG Chao,GONG Yue,ZHAO Wan-yu,ZHAO Xiu-fang,GUO Wen-jiao,PENG Hao,ZHANG Ji,LIANG Hui-gang. Research Advances of Novel Coronavirus Disease (COVID-19)[J]. China Biotechnology, 2020, 40(1-2): 38-50.
[11] HE Meng,ZHANG Guo-lin,LI Yan,HAN Xue-bo,LIU Hong-peng,LI Xin,QIAN Ling-ling,LIU Kun-mei,GUO Le. Soluble Expression of Recombinant Antigen CagL from Helicobacter pylori Pathogenicity Island and Preparation and Analysis of Anti-CagA Polyclonal Antibody[J]. China Biotechnology, 2020, 40(11): 21-27.
[12] QIU Dan-dan,LU Cai-xia,DAI Jie-jie. Application of Hepatocyte-like Cells Derived from Induced Pluripotent Stem Cells in HCV Infection Model[J]. China Biotechnology, 2020, 40(11): 67-72.
[13] Zuo-bo XU,Jiu-bing LI,Hong-lei DING. Research Progress in Mycoplasma hyopneumonia Detection Technology[J]. China Biotechnology, 2019, 39(4): 78-83.
[14] Jing-xian LIU,Xin HE,Hui-ming HAN. New Progress in the Study of Streptococcus suis Type 2 Virulence Factors[J]. China Biotechnology, 2018, 38(3): 97-104.
[15] XIA Meng, TIAN Xiao-hong, BAI Shu-ling, HOU Wei-jian. Optimization of Induced Pluripotent Stem Cell Technology and Its Application Prospect[J]. China Biotechnology, 2016, 36(6): 87-91.