Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (11): 67-72    DOI: 10.13523/j.cb.2006008
    
Application of Hepatocyte-like Cells Derived from Induced Pluripotent Stem Cells in HCV Infection Model
QIU Dan-dan1,2,LU Cai-xia2**(),DAI Jie-jie2**()
1 Kunming Medical University,Kunming 650504, China
2 Institute of Medical Biology, Chinese Academy of Medicine Sciences(CAMS)/Peking UnionMedical College(PUMC), Kunming 650118, China
Download: HTML   PDF(373KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Induced pluripotent stem cells (iPSCs) as well as embryonic stem cells(ESCs),is a kind of cells with potential of self-renewing and unlimited proliferation,has the potentian of inducing differentiation into all types of cells in every germ layer of the body. iPSCs are derived from the body itself, which avoids the immune rejection and medical ethics problems of ESCs and they play an important role in biomedical research. At present, iPS-derived hepatocyte-like cells(iHLCs) have been widely used in the establishment of in vitro and in vivo infection model of HCV.The HCV model based on iHLCs can be used to study the pathogenesis of HCV,the role of host genes in the pathogenesis of HCV, to screen new anti-HCV drugs and development of vaccine.The origin of iPSCs, the research methods of inducing iPSCs into functional liver cells by different strategies, and the application of iPSCs in HCV infection model were summarized.



Key wordsInduced pluripotent stem cells(iPSCs)      Hepatocyte-like cells      HCV infection model     
Received: 04 June 2020      Published: 11 December 2020
ZTFLH:  Q939.47  
Corresponding Authors: Cai-xia LU,Jie-jie DAI     E-mail: lcx@imbcams.com.cn;djj@imbcams.com.cn
Cite this article:

QIU Dan-dan,LU Cai-xia,DAI Jie-jie. Application of Hepatocyte-like Cells Derived from Induced Pluripotent Stem Cells in HCV Infection Model. China Biotechnology, 2020, 40(11): 67-72.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2006008     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I11/67

[1]   Pawlotsky J M, Chevaliez S, McHutchison J G. The hepatitis C virus life cycle as a target for new antiviral therapies. Gastroenterology, 2007,132(5):1979-1998.
[2]   Simmonds P, Bukh J, Combet C, et al. Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatology, 2005,42(4):962-973.
doi: 10.1002/hep.20819 pmid: 16149085
[3]   Chisari F V. Unscrambling hepatitis C virus-host interactions. Nature, 2005,436(7053):930-932.
[4]   WHO. Global health sector strategy on viral hepatitis 2016-2021. Geneva:World Health Organization, 2016.
[5]   Scheel T K, Rice C M. Understanding the hepatitis C virus life cycle paves the way for highly effective therapies. Nat Med, 2013,19(7):837-849.
pmid: 23836234
[6]   Liang T J, Ghany M G. Current and future therapies for hepatitis C virus infection. N Engl J Med, 2013,368(20):1907-1917.
pmid: 23675659
[7]   Yilmaz H, Yilmaz E M, Leblebicioglu H. Barriers to access to hepatitis C treatment. J Infect Dev Ctries, 2016,10(4):308-316.
[8]   Lo Re V, Gowda C, Urick P N, et al. Disparities in absolute denial of modern hepatitis C therapy by type of insurance. Clin Gastroenterol Hepatol, 2016,14(7):1035-1043.
[9]   Bukh J. A critical role for the chimpanzee model in the study of hepatitis C. Hepatology, 2004,39(6):1469-1475.
[10]   Gai H, Nguyen D M, Moon Y J, et al. Generation of murine hepatic lineage cells from induced pluripotent stem cells. Differentiation, 2010,79(3):171-181.
doi: 10.1016/j.diff.2010.01.002 pmid: 20106584
[11]   Si-Tayeb K, Noto F K, Nagaoka M, et al. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology, 2010,51(1):297-305.
[12]   Song Z, Cai J, Liu Y, et al. Efficient generation of hepatocytelike cells from human induced pluripotent stem cells. Cell Res, 2009,19(11):1233-1242.
[13]   Sullivan G J, Hay D C, Park I H, et al. Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology, 2010,51(1):329-335.
[14]   Chen Y F, Tseng C Y, Wang H W, et al. Rapid generation of mature hepatocyte-like cells from human induced pluripotent stem cells by an efficient three-step protocol. Hepatology, 2012,55(4):1193-1203.
[15]   Takayama K, Inamura M, Kawabata K, et al. Efficient and directive generation of two distinct endoderm lineages from human ESCs and iPSCs by differentiation stage-specific SOX17 transduction. PLoS One, 2011,6(7):e21780.
[16]   Inamura M, Kawabata K, Takayama K, et al. Efficient generation of hepatoblasts from human ES cells and iPS cells by transient overexpression of homeobox gene HEX. Mol Ther, 2011,19(2):400-407.
pmid: 21102561
[17]   Takayama K, Inamura M, Kawabata K, et al. Efficient generation of functional hepatocytes from human embryonic stem cells and induced pluripotent stem cells by HNF4α transduction. Mol Ther, 2012,20(1):127-137.
pmid: 22068426
[18]   Du C, Narayanan K, Leong M F, et al. Induced pluripotent stem cell-derived hepatocytes and endothelial cells in multi-component hydrogel fibers for liver tissue engineering. Biomaterials, 2014,35(23):6006-6014.
doi: 10.1016/j.biomaterials.2014.04.011 pmid: 24780169
[19]   Krause P, Saghatolislam F, Koenig S, et al. Maintaining hepatocyte differentiation in vitro through co-culture with hepatic stellate cells. In Vitro Cell Dev Biol Anim, 2009,45(5-6):205-212.
[20]   Takebe T, Zhang R R, Koike H, et al. Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant. Nat Protoc, 2014,9(2):396-409.
[21]   Takebe T, Sekine K, Enomura M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature, 2013,499(7459):481-484.
[22]   Pettinato G, Lehoux S, Ramanathan R, et al. Generation of fully functional hepatocyte-like organoids from human induced pluripotent stem cells mixed with endothelial cells. Sci Rep, 2019,9(1):8920.
doi: 10.1038/s41598-019-45514-3 pmid: 31222080
[23]   Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006,126(4):663-676.
[24]   Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007,131(5):861-872.
[25]   Cheng Z, Ito S, Nishio N, et al. Establishment of induced pluripotent stem cells from aged mice using bone marrow-derived myeloid cells. J Mol Cell Biol, 2011,3(2):91-98.
doi: 10.1093/jmcb/mjq044 pmid: 21228011
[26]   Cai J, Li W, Su H, et al. Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells. J Biol Chem, 2010,285(15):11227-11234.
doi: 10.1074/jbc.M109.086389 pmid: 20139068
[27]   Li Y, Liu T, van Halm-Lutterodt N, et al. Reprogramming of blood cells into induced pluripotent stem cells as a new cell source for cartilage repair. Stem Cell Res Ther, 2016,7:31.
[28]   Aasen T, Raya A, Barrero M J, et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol, 2008,26(11):1276-1284.
[29]   Jouni M, SI-Tayeb K, Es-Salah-Lamoureux Z, et al. Personalized medicine:Using cardiomyocytes differentiated from urine-derived pluripotent stem cells to recapitulate electrophysiological characteristics of type 2 long QT syndrome. J Am Heart Assoc, 2015,4(9):e002159.
pmid: 26330336
[30]   Wernig M, Zhao J P, Pruszak J, et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci USA, 2008,105(15):5856-5861.
doi: 10.1073/pnas.0801677105 pmid: 18391196
[31]   Schenke-Layland K, Rhodes K E, Angelis E, et al. Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic line. Cells, 2008,26(6):1537-1546.
[32]   Ma F, Ebihara Y, Umeda K, et al. Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis. Proc Natl Acad Sci USA, 2008,105(35):13087-13092.
[33]   Kattman S J, Witty A D, Gagliardi M, et al. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell, 2011,8(2):228-240.
[34]   Nostro M C, Sarangi F, Yang C, et al. Efficient generation of NKX6-1+ pancreatic progenitors from multiple human pluripotent stem cell lines. Stem Cell Reports, 2015,4(4):591-604.
doi: 10.1016/j.stemcr.2015.02.017 pmid: 25843049
[35]   Sa-Ngiamsuntorn K, Wongkajornsilp A, Phanthong P, et al. A robust model of natural hepatitis C infection using hepatocyte-like cells derived from human induced pluripotent stem cells as a long-term host. [2020-05-23]. https://virologyj.biomedcentral.com/articles/10.1186/s12985-016-0519-1.
[36]   Sa-Ngiamsuntorn K, Hongeng S, Wongkajornsilp A. Development of hepatocyte-like cell derived from human induced pluripotent stem cell as a host for clinically isolated hepatitis C virus. Curr Protoc Stem Cell Biol, 2017,42(1):4A.13.1-4A.13.34.
[37]   Nakamori D, Akamine H, Takayama K, et al. Direct conversion of human fibroblasts into hepatocyte-like cells by ATF5, PROX1, FOXA2, FOXA3, and HNF4A transduction. Sci Rep, 2017,7(1):16675.
pmid: 29192290
[38]   Xie B, Sun D, Du Y, et al. A two-step lineage reprogramming strategy to generate functionally competent human hepatocytes from fibroblasts. Cell Res, 2019,29(9):696-710.
doi: 10.1038/s41422-019-0196-x pmid: 31270412
[39]   Wakita T, Kato T. Development of an infectious HCV cell culture system. In: Tan S L. Hepatitis C Viruses: Genomes and Molecular Biology. Norfolk (UK): Horizon Bioscience, 2006.
[40]   Helle F, Brochot E, Fournier C, et al. Correction: Permissivity of primary human hepatocytes and different hepatoma cell lines to cell culture adapted hepatitis C virus. PLoS One, 2019,14(9):e0223022.
[41]   Podevin P, Carpentier A, Pene V, et al. Production of infectious hepatitis C virus in primary cultures of human adult hepatocytes. Gastroenterology, 2010,139(4):1355-1364.
doi: 10.1053/j.gastro.2010.06.058 pmid: 20600021
[42]   Gondeau C, Briolotti P, Razafy F, et al. In vitro infection of primary human hepatocytes by HCV-positive sera: insights on a highly relevant model. Gut, 2014,63(9):1490-1500.
[43]   Ellor S, Shupe T, Petersen B. Stem cell therapy for inherited metabolic disorders of the live. Exp Hematol, 2008,36(6):716-725.
[44]   Schwartz R E, Trehan K, Andrus L, et al. Modeling hepatitis C virus infection using human induced pluripotent stem cells. Proc Natl Acad Sci USA, 2012,109(7):2544-2548.
pmid: 22308485
[45]   Catanese M T, Dorner M. Advances in experimental systems to study hepatitis C virus in vitro and in vivo. Virology, 2015,479-480:221-233.
doi: 10.1016/j.virol.2015.03.014 pmid: 25847726
[46]   Roelandt P, Obeid S, Paeshuyse J, et al. Human pluripotent stem cell-derived hepatocytes support complete replication of hepatitis C virus. J Hepatol, 2012,57(2):246-251.
doi: 10.1016/j.jhep.2012.03.030 pmid: 22521345
[47]   Yoshida T, Takayama K, Kondoh M, et al. Use of human hepatocyte-like cells derived from induced pluripotent stem cells as a model for hepatocytes in hepatitis C virus infection. Biochem Biophys Res Commun, 2011,416(1-2):119-124.
pmid: 22093821
[48]   Si-Tayeb K, Duclos-Vallée J C, Petit M A. Hepatocyte-like cells differentiated from human induced pluripotent stem cells (iHLCs) are permissive to hepatitis C virus (HCV) infection: HCV study gets personal. J Hepatol, 2012,57(3):689-691.
doi: 10.1016/j.jhep.2012.04.012 pmid: 22565120
[49]   Sch?bel A, R?sch K, Herker E. Functional innate immunity restricts hepatitis C virus infection in induced pluripotent stem cell-derived hepatocytes. Sci Rep, 2018,8(1):3893.
doi: 10.1038/s41598-018-22243-7 pmid: 29497123
[50]   Zhou X, Sun P, Lucendo-Villarin B, et al. Modulating innate immunity improves hepatitis C virus infection and replication in stem cell-derived hepatocytes. Stem Cell Reports, 2014,3(1):204-214.
doi: 10.1016/j.stemcr.2014.04.018 pmid: 25068132
[51]   Irudayam J I, Contreras D, Spurka L, et al. Characterization of type I interferon pathway during hepatic differentiation of human pluripotent stem cells and hepatitis C virus infection. Stem Cell Res, 2015,15(2):354-364.
doi: 10.1016/j.scr.2015.08.003 pmid: 26313525
[52]   Wu X, Robotham J M, Lee E, et al. Productive hepatitis C virus infection of stem cell-derived hepatocytes reveals a critical transition to viral permissiveness during differentiation. PLoS Pathog, 2012,8(4):e1002617.
doi: 10.1371/journal.ppat.1002617 pmid: 22496645
[53]   Nagamoto Y, Takayama K, Tashiro K, et al. Efficient engraftment of human induced pluripotent stem cell-derived hepatocyte-like cells in uPA/ SCID mice by overexpression of FNK, a Bcl-xL mutant gene. Cell Transplant, 2015,24(6):1127-1138.
pmid: 24806294
[54]   Carpentier A, Tesfaye A, Chu V, et al. Engrafted human stem cell-derived hepatocytes establish an infectious HCV murine model. J Clin Invest, 2014,124(11):4953-4964.
[55]   Schwartz R E, Bram Y, Frankel A. Pluripotent stem cell-derived hepatocyte-like cells: A tool to study infectious disease. Curr Pathobiol Rep, 2016,4(3):147-156.
doi: 10.1007/s40139-016-0113-7 pmid: 29910973
[56]   Corbett J L, Duncan S A. iPSC-derived hepatocytes as a platform for disease modeling and drug discovery. Front Med, 2019,6:265.
doi: 10.3389/fmed.2019.00265
No related articles found!