Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (3): 97-104    DOI: 10.13523/j.cb.20180313
Orginal Article     
New Progress in the Study of Streptococcus suis Type 2 Virulence Factors
Jing-xian LIU1,Xin HE1*(),Hui-ming HAN1,2*()
1 Basic Medical College, Beihua University, Jilin 132013, China
2 The Clinical Immunology Research Center, Beihua University, Jilin 132013, China
Download: HTML   PDF(528KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Streptococcus suis is an infectious Gram-positive bacterium. Streptococcus suis serotype 2 (S. suis 2, SS2) is an important zoonotic pathogen that severely affects the swine breeding industry and causes human mortality rates of between 5% and 20%. Its virulence factors play an important role in the pathogenesis. In recent years, there were many new advances in the virulence factors of SS2. in the pathogenic mechanism, and there were either new knowledge for effective prevention and control of the disease. The recent progress in the virulence-related factors of SS2, e.g. proteins, enzymes, the virulence factor gene expression two-component system and type IV secretion system which interaction to host immune system were summarized. There were valuable references for the treatment of SS2 and vaccine development.



Key wordsStreptococcus suis serotype 2      Virulence      factor      Pathogenesis     
Received: 20 December 2017      Published: 04 April 2018
ZTFLH:  S852.61  
Cite this article:

Jing-xian LIU,Xin HE,Hui-ming HAN. New Progress in the Study of Streptococcus suis Type 2 Virulence Factors. China Biotechnology, 2018, 38(3): 97-104.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180313     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I3/97

[1]   Fittipaldi N, Segura M, Grenier D , et al. Virulence factors involved in the pathogenesis of the infection caused by the swine pathogen and zoonotic agent Streptococcus suis. Future Microbiology, 2012,7(2):259-279.
doi: 10.2217/fmb.11.149 pmid: 22324994
[2]   Gottschalk M, Segura M, Xu J . Streptococcus suis infections in humans: the Chinese experience and the situation in North America. Animal Health Research Reviews, 2007,8(1):29-45.
doi: 10.1017/S1466252307001247 pmid: 17692141
[3]   Zhang A, Chen B, Yuan Z , et al. HP0197 contributes to CPS synthesis and the virulence of Streptococcus suis via CcpA. PLoS One, 2012,7(11):e50987.
doi: 10.1371/journal.pone.0050987 pmid: 3511442
[4]   Gottschalk M, Xu J, Calzas C , et al. Streptococcus suis: a new emerging or an old neglected zoonotic pathogen. Future Microbiology, 2010,5(3):371-391.
doi: 10.2217/fmb.10.2 pmid: 20210549
[5]   Chen C, Tang J, Dong W , et al. A glimpse of streptococcal toxic shock syndrome from comparative genomics of S. suis 2 Chinese Isolates. PLoS One, 2007,2(3):e315.
doi: 10.1371/journal.pone.0000315
[6]   Al-Numani D, Segura M, Doré M , et al. Up-regulation of ICAM-1, CD11a/CD18 and CD11c/CD18 on human THP-1 monocytes stimulated by Streptococcus suis serotype 2. Clinical & Experimental Immunology, 2003,133(1):67-77.
doi: 10.1046/j.1365-2249.2003.02189.x pmid: 12823280
[7]   郭莉莉, 徐成刚, 张建民 , 等. 猪链球菌2型毒力相关因子的研究进展. 中国畜牧兽医, 2010,37(1):145-149.
[7]   Guo L L, Xu C G, Zhang J M , et al. Progress on virulence-associated factor of swine Streptococcus suis type 2. China Animal Husbandry & Veterinary Medicine, 2010,37(1):145-149.
[8]   Yang X P, Fu J Y, Yang R C , et al. EGFR transactivation contributes to neuroinflammation in Streptococcus suis meningitis. Journal of Neuroinflammation, 2016,13(1):274.
doi: 10.1186/s12974-016-0734-0 pmid: 5070219
[9]   Xu J, Zheng C, Cao M , et al. The manganese efflux system MntE contributes to the virulence of Streptococcus suis serotype 2. Microbial Pathogenesis, 2017,110:23-30.
doi: 10.1016/j.micpath.2017.06.022 pmid: 28629722
[10]   Xu B, Zhang P, Li W , et al. hsdS, belonging to the type I restriction-modification system, contributes to the Streptococcus suis serotype 2 survival ability in phagocytes. Frontiers in Microbiology, 2017,8:1524.
doi: 10.3389/fmicb.2017.01524 pmid: 5552720
[11]   Xiao G, Wu Z, Zhang S , et al. Mac Protein is not an essential virulence factor for the virulent reference strain Streptococcus suis P1/7. Current Microbiology, 2017,4(1):90-96.
doi: 10.1007/s00284-016-1160-3 pmid: 27847975
[12]   Li Q, Ma C, Fu Y , et al. Factor H specifically capture novel Factor H-binding proteins of Streptococcus suis and contribute to the virulence of the bacteria. Microbiological Research, 2017,196:17-25.
doi: 10.1016/j.micres.2016.11.011 pmid: 28164787
[13]   钟璟皓, 胡丹, 唐慧娴 , 等. 2型猪链球菌SSU05_0736基因敲除株的构建及其特性分析. 医学研究生学报, 2016,29(6):571-576.
doi: 10.16571/j.cnki.1008-8199.2016.06.003
[13]   Zhong J H, Hu D, Tang H X , et al. Construction and characterization of cAMP receptor protein knock-out mutant of Streptococcus suis serotype 2. Journal of Medical Postgraduates, 2016,29(6):571-576.
doi: 10.16571/j.cnki.1008-8199.2016.06.003
[14]   Feng L, Zhu J, Chang H , et al. The CodY regulator is essential for virulence in Streptococcus suis serotype 2. Scientific Reports, 2016,6:21241.
doi: 10.1038/srep21241 pmid: 26883762
[15]   Spain B H, Koo D, Ramakrishnan M , et al. Truncated forms of a novel yeast protein suppress the lethality of a G protein alpha subunit deficiency by interacting with the beta subunit. Journal of Biological Chemistry, 1995,270(43):25435-25444.
doi: 10.1074/jbc.270.43.25435
[16]   Creasy C L, Madden S L, Bergman L W . Molecular analysis of the PHO81 gene of Saccharomyces cerevisiae. Nucleic Acids Research, 1993,21(8):1975-1982.
doi: 10.1093/nar/21.8.1975 pmid: 309440
[17]   Battini J L , Rasko J E J, Miller A D. A human cell-surface receptor for xenotropic and polytropic murine leukemia viruses: possible role in G protein-coupled signal transduction. Proceedings of the National Academy of Sciences, 1999,96(4):1385-1390.
doi: 10.1073/pnas.96.4.1385 pmid: 9990033
[18]   Zheng C, Xu J, Li J , et al. Two Spx regulators modulate stress tolerance and virulence in Streptococcus suis serotype 2. PLoS One, 2014,9(9):e108197.
doi: 10.1371/journal.pone.0108197 pmid: 25264876
[19]   Li M, Shen X, Yan J , et al. GI-type T4SS-mediated horizontal transfer of the 89K pathogenicity island in epidemic Streptococcus suis serotype 2. Molecular Microbiology, 2011,79(6):1670-1683.
doi: 10.1111/j.1365-2958.2011.07553.x pmid: 3132442
[20]   郑君希 . 猪链球菌2型新型溶血相关基因鉴定及功能研究. 南京:南京农业大学, 2013.
[20]   Zheng J X . Identification and Characterization of a Novel Hemolysis--related Gene in Streptococcus suis Serotype 2. Nanjing:Nanjing Agricultural University, 2013.
[21]   Haas B, Vaillancourt K, Bonifait L , et al. Hyaluronate lyase activity of Streptococcus suis serotype 2 and modulatory effects of hyaluronic acid on the bacterium's virulence properties. BMC Research Notes, 2015,8(1):1-11.
doi: 10.1186/1756-0500-8-1 pmid: 25645429
[22]   操敏 . 2型猪链球菌AI-2合成酶LuxS的功能鉴定及其在毒力学中的作用. 重庆:第三军医大学, 2012.
[22]   Cao M . Functional Definition of LuxS,An Autoinducer-2(AI-2) Synthase and Its Role in Full Virulence of Streptococcus suis Serotype 2. Chongqing:Army Medical University, 2012.
[23]   Wang Y, Yi L, Wang S , et al. Crystal structure and identification of two key amino acids involved in AI-2 production and biofilm formation in Streptococcus suis LuxS. PLoS One, 2015,10(10):e0138826.
doi: 10.1371/journal.pone.0138826
[24]   董瑞萍, 王长军, 程功 , 等. 猪链球菌2型唾液酸合成酶neuB基因敲除突变株的构建及其生物学特性. 微生物学通报, 2009,36(2):238-244.
[24]   Dong R P, Wang C J, Chong G , et al. Construction and function study of the neuB gene encoding sialic acid synthase knock-out mutant of Streptococcus suis serotype 2. Microbiology China, 2009,36(2):238-244.
[25]   Feng Y, Cao M, Shi J , et al. Attenuation of Streptococcus suis virulence by the alteration of bacterial surface architecture. Scientific Reports, 2012,2:710.
doi: 10.1038/srep00710 pmid: 23050094
[26]   朱静, 胡丹, 刘丽娜 , 等. 荚膜唾液酸对猪链球菌激活巨噬细胞TLR2-AKT-NF-κB信号通路影响的研究. 微生物学通报, 2013,40(6):1058-1067.
[26]   Zhu J, Hu D, Liu L N , et al. Research on the role of capsular sialic acid in Streptococcus suis activate macrophage TLR2-AKT-NF-κB signaling pathway. Microbiology China, 2013,40(6):1058-1067.
[27]   Vollmer W, Tomasz A . The pgdA gene encodes for a peptidoglycan N-acetylglucosamine deacetylase in Streptococcus pneumoniae. Journal of Biological Chemistry, 2000,275(27):20496-20501.
doi: 10.1074/jbc.M910189199
[28]   Fittipaldi N, Sekizaki T D , Dominguez-Punaro-Mde L, et al. Significant contribution of the pgdA gene to the virulence of Streptococcus suis. Molecular Microbiology, 2008,70(5):1120-1135.
doi: 10.1111/j.1365-2958.2008.06463.x pmid: 18990186
[29]   司有辉 . 谷氨酰胺合成酶GlnA及其转录调节因子GlnR对2型猪链球菌致病力影响的研究. 武汉:华中农业大学, 2009.
doi: 10.7666/d.Y1812610
[29]   Si Y H . Studies on Contribution of Glutamine Synthetase GlnA and Its Regulator GlnR to the Virulence of Streptococcus suis Serotype 2. Wuhan:Huazhong Agricultural University, 2009.
doi: 10.7666/d.Y1812610
[30]   李娜 . 猪链球菌2型烯醇化酶增强血脑屏障通透性的作用及其机制. 长春:吉林大学, 2014.
[30]   Li N . The Effect and the Mechanism of Enolase from Streptococcus suis Type 2 on Promoting Blood Brain Barrier Permeability. Changchun:Jilin University, 2014.
[31]   霍春月, 纪颖, 任丽丽 , 等. 血清型2型猪链球菌烯醇化酶参与猪链球菌抗吞噬作用. 细胞与分子免疫学杂志, 2014,30(11):1146-1149.
[31]   Huo C Y, Ji Y, Ren L L , et al. Enolase of Streptococcus suis serotype 2 is involved in the antiphagocytosis of Streptococcus suis. Chinese Journal of Cellular and Molecular Immunology, 2014,30(11):1146-1149.
[32]   Pian Y, Wang P, Liu P , et al. Proteomics identification of novel fibrinogen-binding proteins of Streptococcus suis contributing to antiphagocytosis. Frontiers in Cellular & Infection Microbiology, 2015,5(1):19.
doi: 10.3389/fcimb.2015.00019 pmid: 25789245
[33]   唐宇龙 . 猪链球菌2型Sortases、CcpA和SodA功能与致病力研究. 杭州:浙江大学, 2012.
[33]   Tang Y L . Functional Analysis of Sortases, CcpA and SodA of Streptococcus suis Type 2 in Relation to Pathogenicity. Hangzhou:Zhejiang University, 2012.
[34]   谭臣 . 猪链球菌2型ECE1的致病性及6PGD蛋白的免疫原性研究. 武汉:华中农业大学, 2010.
doi: 10.7666/d.Y1805329
[34]   Tan C . Study on the Pathogenicity of Streptococcus suis Serotype 2 ECE1 and the Immunogenicity of the 6PGD Protein. Wuhan:Huazhong Agricultural University, 2010.
doi: 10.7666/d.Y1805329
[35]   Ming L, Wang C, Feng Y , et al. SalK/SalR, a two-component signal transduction system, is essential for full virulence of highly invasive Streptococcus suis Serotype 2. PLoS One, 2008,3(5):e2080.
doi: 10.1371/journal.pone.0002080 pmid: 18461172
[36]   Wang J, Gao Y, Teng K , et al. Restoration of bioactive lantibiotic suicin from a remnant lan locus of pathogenic Streptococcus suis serotype 2. Applied & Environmental Microbiology, 2014,80(3):1062-1071.
doi: 10.1128/AEM.03213-13 pmid: 24271178
[37]   Li J, Tan C, Zhou Y , et al. The two-component regulatory system CiaRH contributes to the virulence of Streptococcus suis 2. Veterinary Microbiology, 2011,148(1):99-104.
doi: 10.1016/j.vetmic.2010.08.005 pmid: 20832201
[38]   Han H, Liu C, Wang Q , et al. The two-component system Ihk/Irr contributes to the virulence of Streptococcus suis serotype 2 strain 05ZYH33 through alteration of the bacterial cell metabolism. Microbiology, 2012,158(Pt 7):1852-1866.
doi: 10.1099/mic.0.057448-0
[39]   Wang H, Shen X, Zhao Y , et al. Identification and proteome analysis of the two-component VirR/VirS system in epidemic Streptococcus suis serotype 2. Fems Microbiology Letters, 2012,333(2):160-168.
doi: 10.1111/fml.2012.333.issue-2
[40]   Xu J, Fu S, Liu M , et al. The two-component system NisK/NisR contributes to the virulence of Streptococcus suis serotype 2. Microbiological Research, 2014,169(7-8):541-546.
doi: 10.1016/j.micres.2013.11.002
[41]   Pan X, Ge J, Li M , et al. The orphan response regulator CovR: a globally negative modulator of virulence in Streptococcus suis serotype 2. Journal of Bacteriology, 2009,191(8):2601-2612.
doi: 10.1128/JB.01309-08
[42]   De G A, Buys H, Van A L , et al. Response regulator important in pathogenesis of Streptococcus suis serotype 2. Microbial Pathogenesis, 2002,33(4):185-192.
doi: 10.1006/mpat.2002.0526 pmid: 12385746
[43]   Ju A P, Wang CJ, Li M , et al. Construction of RevS gene knock-out mutant of Streptococcus suis serotype 2. Chinese Journal of Epidemiology, 2008,29(1):59-64.
[44]   Wu T, Chang H, Tan C , et al. The orphan response regulator RevSC21 controls the attachment of Streptococcus suis serotype-2 to human laryngeal epithelial cells and the expression of virulence genes. Fems Microbiology Letters, 2010,292(2):170-181.
doi: 10.1111/j.1574-6968.2008.01486.x pmid: 19210676
[45]   Jiang X, Yang Y, Zhou J , et al. Roles of the putative type IV-like secretion system key component VirD4 and PrsA in pathogenesis of Streptococcus suis type 2. Frontiers in Cellular and Infection Microbiology, 2016,6:172.
doi: 10.3389/fcimb.2016.00172 pmid: 5133265
[46]   Du B, Ji W, An H , et al. Functional analysis of c-di-AMP phosphodiesterase, GdpP, in Streptococcus suis serotype 2. Microbiological Research, 2014,169(9):749-758.
doi: 10.1016/j.micres.2014.01.002 pmid: 24680501
[47]   刘建涛, 张强, 宋娅静 , 等. 猪链球菌2型蛋白分支酸合成酶(AroC)通过p38MAPK和NF-κB通路促进TLR4依赖的炎性反应. 畜牧兽医学报, 2014,45(11):1866-1873.
doi: 10.11843/j.issn.0366-6964.2014.11.018
[47]   Liu J, Zhang Q, Song Y , et al. Streptococcus suis serotype 2 protein AroC induces Toll-like receptor 4-dependent inflammatory responses in RAW264.7 via p38MAPK and NF-κB signaling. Acta Veterinaria et Zootrchnica Sinica, 2014,45(11):1866-1873.
doi: 10.11843/j.issn.0366-6964.2014.11.018
[48]   Gao T, Tan M, Liu W , et al. GidA, a tRNA modification enzyme, contributes to the growth, and virulence of Streptococcus suis Serotype 2. Frontiers in Cellular & Infection Microbiology, 2016,6(107):44.
doi: 10.3389/fcimb.2016.00044 pmid: 4835480
[49]   龚秀芳, 胡丹, 朱旭辉 , 等. 2型猪链球菌SSU0448基因敲除突变株的构建及其毒力分析. 微生物学通报, 2015,42(9):1717-1726.
doi: 10.13344/j.microbiol.china.140984
[49]   Gong X F, Hu D, Zhu X H , et al. Construction and virulence analysis of the SSU0448 gene knockout mutant in Streptococcus suis serotype 2. Microbiology China, 2015,42(9):1717-1726.
doi: 10.13344/j.microbiol.china.140984
[50]   Aranda J, Garrido M E, Fittipaldi N , et al. The cation-uptake regulators AdcR and Fur are necessary for full virulence of Streptococcus suis. Veterinary Microbiology, 2010,144(1):246-249.
doi: 10.1016/j.vetmic.2009.12.037 pmid: 20133089
[51]   Willenborg J, Fulde M, De G A , et al. Role of glucose and CcpA in capsule expression and virulence of Streptococcus suis. Microbiology, 2011,157(Pt 6):1823-1833.
doi: 10.1099/mic.0.046417-0 pmid: 21349980
[52]   Tang Y, Wu W, Zhang X , et al. Catabolite control protein a of Streptococcus suis type 2 contributes to sugar metabolism and virulence. Journal of Microbiology, 2012,50(6):994-1002.
doi: 10.1007/s12275-012-2035-3 pmid: 23274986
[53]   Fulde M, Willenborg J, De G A , et al. ArgR is an essential local transcriptional regulator of the arcABC operon in Streptococcus suis and is crucial for biological fitness in an acidic environment. Microbiology, 2011,157(2):572-582.
doi: 10.1099/mic.0.043067-0
[54]   Zheng F, Ji H, Cao M , et al. Contribution of the Rgg transcription regulator to metabolism and virulence of Streptococcus suis serotype 2. Infection & Immunity, 2011,79(3):1319-1328.
doi: 10.1128/IAI.00193-10 pmid: 3067506
[55]   Zhang T, Ding Y, Li T , et al. A Fur-like protein PerR regulates two oxidative stress response related operons dpr and metQIN in Streptococcus suis. Bmc Microbiology, 2012,12(1):85.
doi: 10.1186/1471-2180-12-85 pmid: 3458967
[56]   Wilson T L, Jeffers J , Rapp-Gabrielson V J, et al. A novel signature-tagged mutagenesis system for Streptococcus suis serotype 2. Veterinary Microbiology, 2007,122(1):135-145.
doi: 10.1016/j.vetmic.2006.12.025 pmid: 17275218
[57]   Feng Y, Li M, Zhang H , et al. Functional definition and global regulation of Zur, a zinc uptake regulator in a Streptococcus suis serotype 2 strain causing streptococcal toxic shock syndrome. Journal of Bacteriology, 2008,190(22):7567-7578.
doi: 10.1128/JB.01532-07
[58]   Gruening P, Fulde M, Valentinweigand P , et al. Structure, regulation, and putative function of the arginine deiminase system of Streptococcus suis. Journal of Bacteriology, 2006,188(2):361-369.
doi: 10.1128/JB.188.2.361-369.2006 pmid: 1347268
[59]   Houde M, Gottschalk M, Gagnon F , et al. Streptococcus suis capsular polysaccharide inhibits phagocytosis through destabilization of lipid microdomains and prevents lactosylceramide-dependent recognition. Infection & Immunity, 2012,80(2):506-517.
doi: 10.1128/IAI.05734-11 pmid: 22124659
[60]   Musyoki A M, Shi Z, Xuan C , et al. Structural and functional analysis of an anchorless fibronectin-binding protein FBPS from Gram-positive bacterium Streptococcus suis. Proceedings of the National Academy of Sciences of the United States of America, 2016,113(48):13869-13874.
doi: 10.1073/pnas.1608406113
[61]   Roy D , Athey T B T, Auger J P, et al. A single amino acid polymorphism in the glycosyltransferase CpsK defines four Streptococcus suis serotypes. Scientific Reports, 2017,7(1):4066.
doi: 10.1038/s41598-017-04403-3
[62]   Smith H E, Vries R D , Slot R V T, et al. The cps locus of Streptococcus suis serotype 2: genetic determinant for the synthesis of sialic acid. Microbial Pathogenesis, 2000,29(2):127-134.
doi: 10.1006/mpat.2000.0372 pmid: 10906268
[1] ZHANG Hu,LIU Zhen-zhou,CHEN Jia-min,GAO Bao-yan,ZHANG Cheng-wu. Research Progress on the Production of Bioactive Compounds from Marine Diatoms[J]. China Biotechnology, 2021, 41(4): 81-90.
[2] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[3] WANG Hui-lin,ZHOU Kai-qiang,ZHU Hong-yu,WANG Li-jing,YANG Zhong-fan,XU Ming-bo,CAO Rong-yue. Research Progress of Human Coagulation Factor VII and the Recombinant Expression Systems[J]. China Biotechnology, 2021, 41(2/3): 129-137.
[4] BU Kai-xuan,ZHOU Cui-xia,LU Fu-ping,ZHU Chuan-he. Research on the Regulation Mechanism of Bacterial Transcription Initiation[J]. China Biotechnology, 2021, 41(11): 89-99.
[5] ZHAO Jiu-mei,WANG Zhe,LI Xue-ying. Role of Signal Pathways and Related Factors Regulating Cartilage Formation in Bone Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(10): 62-72.
[6] SHI Peng-cheng, JI Xiao-jun. Advances in Expression of Human Epidermal Growth Factor in Yeast[J]. China Biotechnology, 2021, 41(1): 72-79.
[7] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.
[8] LIN Shi-xin,LIU Dong-chen,LEI Yun,XIONG Sheng,XIE Qiu-ling. Screening, Expression and Specificity Detection of Anti-TNF-α Nanobody[J]. China Biotechnology, 2020, 40(7): 15-21.
[9] TONG Mei,CHENG Yong-qing,LIU Jin-yi,XU Chen. Construction of a Strain for Promoting Production of Small Molecule Antibodies in Periplasmic Space of Escherichia coli[J]. China Biotechnology, 2020, 40(5): 48-56.
[10] ZHU Yongzhao,TAO Jin,REN Meng-meng,XIONG Ran,HE Ya-qin,ZHOU Yu,LU Zhen-hui,DU Yong,YANG Zhi-hong. Autophagy Protects Against Apoptosis of Human Placental Mesenchymal Stem Cells of Fetal Origin Induced by Tumor Necrosis Fator-α[J]. China Biotechnology, 2019, 39(9): 62-67.
[11] Jian-xiu LI,Xian-rui CHEN,Xiao-ling CHEN,Yan-yan HUANG,Qi-wen MO,Neng-zhong XIE,Ri-bo HUANG. Construct Whole-cell Biocatalyst and Produce (S)-Acetoin via Synthetic Biology Strategy[J]. China Biotechnology, 2019, 39(4): 60-68.
[12] Yi SONG,Cui-yun ZHANG,Yi LI,Su-su ZHANG,Shun PAN,Yun-yun TAO,Lu-yao XU,Hua-cheng HE,Jiang WU. Preparation of a Novel Surgical Sewing Thread with Control Release of Basic Fibroblast Growth Factor Through Electrospinning Technology[J]. China Biotechnology, 2019, 39(1): 55-62.
[13] Wen-jing WANG,Li-yu YANG,Chan-juan LIU,Jin ZHAO,Qin LUO. Effect of Glutamate Dehydrogenase Deletion on Biofilm Formation,Virulence and Extracellular Proteins Expression of Listeria monocytogenes[J]. China Biotechnology, 2018, 38(9): 1-11.
[14] Xin GAO,Pan-jian WEI,Zhuo-hong YAN,Ling YI,Xiao-jue WANG,Bin YANG,Hong-tao ZHANG. Cloning and Expression of Single Chain Antibody Against Human EGFR[J]. China Biotechnology, 2018, 38(5): 73-78.
[15] Wen-ran YUE,Jun-yan YUE,Xiu-juan ZHANG,Qi YANG,Xiao-dong HAN,Rui-gang WANG,Guo-jing LI. The CiNAC1 from Caragana intermedia Promotes Transgenic Arabidopsis Leaf Senescence[J]. China Biotechnology, 2018, 38(4): 24-29.