Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (8): 20-29    DOI: 10.13523/j.cb.2304008
    
Research and Applications of Human Liver Organoids: Progress and Developments
ZHU Xiang1,ZHANG Jing-yin2,WANG Li-rui3,*()
1 School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211112, China
2 Obstetrics and Gynecology Department, Zhongda Hospital Southeast University, Nanjing 210009, China
3 Institute of Modern Biology, Nanjing University, Nanjing 210008, China
Download: HTML   PDF(1043KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The liver is the major metabolic organ in the body and it plays a crucial regulatory role in maintaining homeostasis. In recent years, liver diseases have seriously threatened human health. However, the in vitro cultured cell lines or in vivo animal models cannot thoroughly reveal pathogenesis of human liver diseases and explore potential therapeutic targets effectively. Human liver organoids (HLOs), which are cell clusters differentiated from human cells through 3D culture in vitro, can mimic the structures and functions of the human liver in vitro. HLOs provide a new model for understanding the physiological structures and functions of the liver, simulating liver diseases in vitro, and exploring drugs for liver disease treatment. This review summarizes establishment strategies and applications of HLO models in recent years, and also discusses the defects of these models, which aim to provide a theoretical basis for the clinical applications of HLOs.



Key wordsLiver      Liver diseases      Human liver organoids      Three dimensional culture     
Received: 04 April 2023      Published: 05 September 2023
ZTFLH:  Q819  
Cite this article:

ZHU Xiang, ZHANG Jing-yin, WANG Li-rui. Research and Applications of Human Liver Organoids: Progress and Developments. China Biotechnology, 2023, 43(8): 20-29.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2304008     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I8/20

细胞名称 细胞因子 肝脏类器官特点 参考文献
人脐静脉内皮细胞、人间充质干细胞、人诱导肝脏内胚层细胞 激活素A、碱性成纤维细胞生长因子(bFGF)、骨形态发生蛋白4(BMP4)、抑瘤素M (OSM) 血管化的人肝芽组织 [24]
人肝内胆管上皮细胞 R-spondin1蛋白、表皮生长因子(EGF)、成纤维细胞生长因子10(FGF10)、肝细胞生长因子(HGF), 骨形态发生蛋白7(BMP7)、成纤维细胞生长因子19(FGF19)、胃泌素 外观呈规则囊泡状,且具有人肝实质细胞特征 [37]
人肝癌细胞 R-spondin1蛋白、Wnt3A蛋白、表皮生长因子(EGF)、成纤维细胞生长因子10(FGF10)、肝细胞生长因子(HGF)、Noggin蛋白、骨形态发生蛋白7(BMP7)、成纤维细胞生长因子19(FGF19)、胃泌素 致密球状或不规则囊泡状结构 [21]
人诱导性多能干细胞 激活素A、骨形态发生蛋白4(BMP4)、肝细胞生长因子(HGF)、表皮生长因子(EGF)、抑瘤素M (OSM)、 成纤维细胞生长因子10(FGF10) 同时具有人肝实质细胞和胆管上皮细胞两种特征 [38]
人诱导性多能干细胞分化而来的间充质细胞、内皮细胞和肝向内胚层细胞 激活素A、Wnt3A蛋白、碱性成纤维细胞生长因子(bFGF)、骨形态发生蛋白4(BMP4)、血管内皮细胞生长因子(VEGF)、血小板衍生生长因子BB(PDGFBB)、成纤维细胞生长因子(FGF2) 血管化的人肝芽结构 [25]
人肝母细胞 R-spondin1蛋白、表皮生长因子(EGF)、肝细胞生长因子(HGF)、成纤维细胞生长因子7(FGF7)、成纤维细胞生长因子10(FGF10)、转化生长因子-α(TGF-α)、抑瘤素M (OSM) 呈葡萄串状,具有人肝实质细胞特征 [20]
人胚胎肝祖细胞 催乳素、表皮生长因子(EGF)、肝细胞生长因子(HGF)、抑瘤素M(OSM) 同时具有人肝实质细胞和胆管上皮细胞两种特征 [23]
人诱导性多能干细胞 激活素A、碱性成纤维细胞生长因子(bFGF)、肝细胞生长因子(HGF)、抑瘤素M(OSM) 在微流控系统内衍生而来,同时具有人肝实质细胞和胆管上皮细胞两种特征 [26]
人诱导性多能干细胞 胃泌素、表皮生长因子(EGF)、R-spondin1蛋白,成纤维细胞生长因子10(FGF10)、肝细胞生长因子(HGF)、Noggin蛋白、Wnt3A蛋白 同时具有人肝实质细胞和胆管上皮细胞两种特征 [39]
人胚胎干细胞、人诱导性多能干细胞 激活素A、骨形态发生蛋白4(BMP4)、成纤维细胞生长因子4(FGF4)、Noggin蛋白 同时具有人肝、胆、胰特征的人肝-胆-胰类器官 [31]
人胚胎干细胞、人诱导性多能干细胞 激活素A、骨形态发生蛋白4(BMP4)、成纤维细胞生长因子4(FGF4)、肝细胞生长因子(HGF)、抑瘤素M(OSM) 同时具有人肝实质细胞样细胞、人星状细胞样细胞和人库普弗样细胞 [27]
人胚胎干细胞 激活素A、Wnt3A蛋白、表皮生长因子(EGF)、成纤维细胞生长因子2(FGF2)、骨形态发生蛋白4(BMP4)、胃泌素、R-spondin1蛋白 呈规则囊泡状,具有向人肝实质细胞和胆管上皮细胞双向分化潜能 [28]
人诱导性多能干细胞 激活素A、骨形态发生蛋白4(BMP4)、成纤维细胞生长因子4(FGF4)、骨形态发生蛋白2(BMP2)、角质细胞生长因子(KGF)、抑瘤素M(OSM) 同时具有2D水平的人肝实质样细胞和3D水平的囊泡状胆管类器官的肝胆类器官 [29]
人胚胎干细胞、人诱导性多能干细胞 骨形态发生蛋白4(BMP4)、碱性成纤维细胞生长因子(bFGF)、表皮生长因子(EGF)、肝细胞生长因子(HGF)、成纤维细胞生长因子7(FGF7)、骨形态发生蛋白7(BMP7)、成纤维细胞生长因子19(FGF19) 同时具有人肝实质细胞和胆管上皮细胞特征,且具有功能性的胆管结构 [32]
人诱导性多能干细胞 激活素A、碱性成纤维细胞生长因子(bFGF)、肝细胞生长因子(HGF)、骨形态发生蛋白4(BMP4)、抑瘤素M(OSM) 在微流控系统内衍生而来,同时具有人肝实质细胞和胆管上皮细胞两种特征 [33]
人诱导性多能干细胞 激活素A、骨形态发生蛋白2(BMP2)、成纤维细胞生长因子4(FGF4)、肝细胞生长因子(HGF)、角质细胞生长因子(KGF)、胃泌素、表皮生长因子(EGF)、转化生长因子-α(TGF-α)、成纤维细胞生长因子7(FGF7)、成纤维细胞生长因子10(FGF10)、抑瘤素M(OSM) 具有人肝实质细胞特征 [35]
人肝内胆管上皮细胞 R-spondin1蛋白、表皮生长因子(EGF)、成纤维细胞生长因子10(FGF10)、肝细胞生长因子(HGF)、骨形态发生蛋白7(BMP7)、成纤维细胞生长因子19(FGF19)、胃泌素 呈规则囊泡状结构,具有人肝实质细胞特征 [35]
人胚胎干细胞、人诱导性多能干细胞 激活素A、骨形态发生蛋白4(BMP4)、成纤维细胞生长因子4(FGF4)、表皮生长因子(EGF)、血管内皮细胞生长因子(VEGF)、成纤维细胞生长因子2(FGF2)、肝细胞生长因子(HGF)、抑瘤素M(OSM) 同时具有人肝实质细胞样细胞、人星状细胞样细胞和人库普弗样细胞 [34,36]
人诱导性多能干细胞 激活素A、碱性成纤维细胞生长因子(bFGF)、肝细胞生长因子(HGF)、抑瘤素M(OSM) 在微流控系统内衍生而来,同时具有人肝实质细胞和胆管上皮细胞两种特征 [40]
人肝母细胞 肝细胞生长因子(HGF)、表皮生长因子(EGF)、胃泌素、成纤维细胞生长因子10(FGF10)、R-spondin1蛋白 呈规则囊泡状结构,具有人肝实质细胞特征 [41]
Table 1 The cells and growth factors used for establishing different HLOs
Fig.1 The establishment strategies of HLOs from human normal tissues The HLOs derived from adult or fetal livers requires the isolation of adult stem cells (ASCs) such as hepatic progenitor cells or intrahepatic biliary epithelial cells (IBECs), followed by 3D culture under specific conditions. HLOs derived from ASCs or IBECs contain single cell type which call for culture medium with complex compositions but simple differentiation process
Fig.2 The establishment strategies of HLOs from hPSCs Establishing HLOs from hPSCs is a complex process that involves various methods of differentiation, all of which require definitive endoderm differentiation towards the liver, followed by induction of maturation under specific conditions. HLOs derived from hPSCs possess diverse cell types and spatial structures, making them suitable for various experimental purposes
[1]   Trefts E, Gannon M, Wasserman D H. The liver. Current Biology: CB, 2017, 27(21): R1147-R1151.
doi: 10.1016/j.cub.2017.09.019
[2]   Jalan-Sakrikar N, Brevini T, Huebert R C, et al. Organoids and regenerative hepatology. Hepatology (Baltimore, Md), 2023, 77(1): 305-322.
doi: 10.1002/hep.32583
[3]   Xia S W, Wang Z M, Sun S M, et al. Endoplasmic reticulum stress and protein degradation in chronic liver disease. Pharmacological Research, 2020, 161: 105218.
doi: 10.1016/j.phrs.2020.105218
[4]   Karlsen T H, Sheron N, Zelber-Sagi S, et al. The EASL-Lancet Liver Commission: protecting the next generation of Europeans against liver disease complications and premature mortality. Lancet (London, England), 2022, 399(10319): 61-116.
doi: 10.1016/S0140-6736(21)01701-3
[5]   Cvetkovski F, Hexham J M, Berglund E. Strategies for liver transplantation tolerance. International Journal of Molecular Sciences, 2021, 22(5): 2253.
doi: 10.3390/ijms22052253
[6]   Takebe T, Taniguchi H. Human iPSC-derived miniature organs: a tool for drug studies. Clinical Pharmacology & Therapeutics, 2014, 96(3): 310-313.
[7]   Nagarajan S R, Paul-Heng M, Krycer J R, et al. Lipid and glucose metabolism in hepatocyte cell lines and primary mouse hepatocytes: a comprehensive resource for in vitro studies of hepatic metabolism. American Journal of Physiology Endocrinology and Metabolism, 2019, 316(4): E578-E589.
doi: 10.1152/ajpendo.00365.2018
[8]   Boyer J L, Soroka C J. Bile formation and secretion: an update. Journal of Hepatology, 2021, 75(1): 190-201.
doi: 10.1016/j.jhep.2021.02.011 pmid: 33617926
[9]   Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nature Reviews Gastroenterology & Hepatology, 2021, 18(3): 151-166.
[10]   Gracia-Sancho J, Caparrós E, Fernández-Iglesias A, et al. Role of liver sinusoidal endothelial cells in liver diseases. Nature Reviews Gastroenterology & Hepatology, 2021, 18(6): 411-431.
[11]   Li W Y, Chang N, Li L Y. Heterogeneity and function of Kupffer cells in liver injury. Frontiers in Immunology, 2022, 13: 940867.
doi: 10.3389/fimmu.2022.940867
[12]   Aizarani N, Saviano A, Sagar, et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature, 2019, 572(7768): 199-204.
doi: 10.1038/s41586-019-1373-2
[13]   Ben-Moshe S, Itzkovitz S. Spatial heterogeneity in the mammalian liver. Nature Reviews Gastroenterology & Hepatology, 2019, 16(7): 395-410.
[14]   Manco R, Itzkovitz S. Liver zonation. Journal of Hepatology, 2021, 74(2): 466-468.
doi: 10.1016/j.jhep.2020.09.003 pmid: 33317845
[15]   Paris J, Henderson N C. Liver zonation, revisited. Hepatology (Baltimore, Md), 2022, 76(4): 1219-1230.
doi: 10.1002/hep.32408
[16]   Corrò C, Novellasdemunt L, Li V S W. A brief history of organoids. American Journal of Physiology Cell Physiology, 2020, 319(1): C151-C165.
doi: 10.1152/ajpcell.00120.2020
[17]   Prior N, Inacio P, Huch M. Liver organoids: from basic research to therapeutic applications. Gut, 2019, 68(12): 2228-2237.
doi: 10.1136/gutjnl-2019-319256 pmid: 31300517
[18]   Huch M, Dorrell C, Boj S F, et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature, 2013, 494(7436): 247-250.
doi: 10.1038/nature11826
[19]   Huch M, Gehart H, Van Boxtel R, et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell, 2015, 160(1-2): 299-312.
doi: 10.1016/j.cell.2014.11.050 pmid: 25533785
[20]   Hu H L, Gehart H, Artegiani B, et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell, 2018, 175(6): 1591-1606.e19.
doi: S0092-8674(18)31505-8 pmid: 30500538
[21]   Broutier L, Mastrogiovanni G, Verstegen M M, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nature Medicine, 2017, 23(12): 1424-1435.
doi: 10.1038/nm.4438 pmid: 29131160
[22]   Peng W C, Logan C Y, Fish M, et al. Inflammatory cytokine TNF-α promotes the long-term expansion of primary hepatocytes in 3D culture. Cell, 2018, 175(6): 1607-1619.e15.
doi: 10.1016/j.cell.2018.11.012
[23]   Vyas D, Baptista P M, Brovold M, et al. Self-assembled liver organoids recapitulate hepatobiliary organogenesis in vitro. Hepatology, 2018, 67(2): 750-761.
doi: 10.1002/hep.29483
[24]   Takebe T, Sekine K, Enomura M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature, 2013, 499(7459): 481-484.
doi: 10.1038/nature12271
[25]   Takebe T, Sekine K, Kimura M, et al. Massive and reproducible production of liver buds entirely from human pluripotent stem cells. Cell Reports, 2017, 21(10): 2661-2670.
doi: S2211-1247(17)31625-X pmid: 29212014
[26]   Wang Y Q, Wang H, Deng P W, et al. In situ differentiation and generation of functional liver organoids from human iPSCs in a 3D perfusable chip system. Lab on a Chip, 2018, 18(23): 3606-3616.
doi: 10.1039/C8LC00869H
[27]   Ouchi R E, Togo S, Kimura M, et al. Modeling steatohepatitis in humans with pluripotent stem cell-derived organoids. Cell Metabolism, 2019, 30(2): 374-384.e6.
doi: S1550-4131(19)30247-5 pmid: 31155493
[28]   Wang S Y, Wang X, Tan Z L, et al. Human ESC-derived expandable hepatic organoids enable therapeutic liver repopulation and pathophysiological modeling of alcoholic liver injury. Cell Research, 2019, 29(12): 1009-1026.
doi: 10.1038/s41422-019-0242-8 pmid: 31628434
[29]   Wu F F, Wu D, Ren Y, et al. Generation of hepatobiliary organoids from human induced pluripotent stem cells. Journal of Hepatology, 2019, 70(6): 1145-1158.
doi: S0168-8278(19)30002-9 pmid: 30630011
[30]   de l’Hortet A C, Takeishi K, Guzman-Lepe J, et al. Generation of human fatty livers using custom-engineered induced pluripotent stem cells with modifiable SIRT1 metabolism. Cell Metabolism, 2019, 30(2): 385-401.e9.
doi: S1550-4131(19)30320-1 pmid: 31390551
[31]   Koike H, Iwasawa K, Ouchi R E, et al. Modelling human hepato-biliary-pancreatic organogenesis from the foregut-midgut boundary. Nature, 2019, 574(7776): 112-116.
doi: 10.1038/s41586-019-1598-0
[32]   Bin Ramli M N, Lim Y S, Koe C T, et al. Human pluripotent stem cell-derived organoids as models of liver disease. Gastroenterology, 2020, 159(4): 1471-1486.e12.
doi: 10.1053/j.gastro.2020.06.010 pmid: 32553762
[33]   Wang Y Q, Wang H, Deng P W, et al. Modeling human nonalcoholic fatty liver disease (NAFLD) with an organoids-on-a-chip system. ACS Biomaterials Science & Engineering, 2020, 6(10): 5734-5743.
[34]   Shinozawa T, Kimura M, Cai Y Q, et al. High-fidelity drug-induced liver injury screen using human pluripotent stem cell-derived organoids. Gastroenterology, 2021, 160(3): 831-846.e10.
doi: 10.1053/j.gastro.2020.10.002 pmid: 33039464
[35]   Guo J Y, Duan L F, He X Y, et al. A combined model of human iPSC-derived liver organoids and hepatocytes reveals ferroptosis in DGUOK mutant mtDNA depletion syndrome. Advanced Science, 2021, 8(10): 2004680.
doi: 10.1002/advs.v8.10
[36]   Kimura M, Iguchi T, Iwasawa K, et al. En masse organoid phenotyping informs metabolic-associated genetic susceptibility to NASH. Cell, 2022, 185(22): 4216-4232.e16.
doi: 10.1016/j.cell.2022.09.031
[37]   Broutier L, Andersson-Rolf A, Hindley C J, et al. Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nature Protocols, 2016, 11(9): 1724-1743.
doi: 10.1038/nprot.2016.097 pmid: 27560176
[38]   Guan Y, Xu D, Garfin P M, et al. Human hepatic organoids for the analysis of human genetic diseases. JCI Insight, 2017, 2(17): e94954.
doi: 10.1172/jci.insight.94954
[39]   Akbari S, Sevinç G G, Ersoy N, et al. Robust, long-term culture of endoderm-derived hepatic organoids for disease modeling. Stem Cell Reports, 2019, 13(4): 627-641.
doi: S2213-6711(19)30301-7 pmid: 31522975
[40]   Tao T T, Deng P W, Wang Y Q, et al. Microengineered multi-organoid system from hiPSCs to recapitulate human liver-islet axis in normal and type 2 diabetes. Advanced Science, 2022, 9(5): 2103495.
doi: 10.1002/advs.v9.5
[41]   Simoneau C R, Erickson A L, Meyers N L, et al. Modelling T-cell immunity against hepatitis C virus with liver organoids in a microfluidic coculture system. Open Biology, 2022, 12(3): 210320.
doi: 10.1098/rsob.210320
[42]   Prior N, Hindley C J, Rost F, et al. Lgr5+ stem and progenitor cells reside at the apex of a heterogeneous embryonic hepatoblast pool. Development (Cambridge, England), 2019, 146(12): dev174557.
[43]   McCarron S, Bathon B, Conlon D M, et al. Functional characterization of organoids derived from irreversibly damaged liver of patients with NASH. Hepatology (Baltimore, Md), 2021, 74(4): 1825-1844.
doi: 10.1002/hep.31857
[44]   Sorrentino G, Rezakhani S, Yildiz E, et al. Mechano-modulatory synthetic niches for liver organoid derivation. Nature Communications, 2020, 11(1): 1-10.
doi: 10.1038/s41467-019-13993-7
[45]   Illath K, Kar S, Gupta P, et al. Microfluidic nanomaterials: from synthesis to biomedical applications. Biomaterials, 2022, 280: 121247.
doi: 10.1016/j.biomaterials.2021.121247
[46]   Filippi M, Buchner T, Yasa O, et al. Microfluidic tissue engineering and bio-actuation. Advanced Materials, 2022, 34(23): 2108427.
doi: 10.1002/adma.v34.23
[47]   Liu Y, Yang G Z, Hui Y, et al. Microfluidic nanoparticles for drug delivery. Small, 2022, 18(36): 2106580.
doi: 10.1002/smll.v18.36
[48]   Hur J, Chung A J. Microfluidic and nanofluidic intracellular delivery. Advanced Science, 2021, 8(15): 2004595.
doi: 10.1002/advs.v8.15
[49]   Kong M Y, Zhou D. Establishment of universal human embryonic stem cell lines. Immunology Letters, 2021, 230: 59-62.
doi: 10.1016/j.imlet.2020.12.001 pmid: 33309828
[50]   Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4): 663-676.
doi: 10.1016/j.cell.2006.07.024 pmid: 16904174
[51]   Cyranoski D. Woman is first to receive cornea made from ‘reprogrammed’ stem cells.[2022-09-05]. https://www.nature.com/articles/d41586-019-02597-2.
[52]   Poetsch M S, Strano A, Guan K M. Human induced pluripotent stem cells: from cell origin, genomic stability, and epigenetic memory to translational medicine. Stem Cells (Dayton, Ohio), 2022, 40(6): 546-555.
doi: 10.1093/stmcls/sxac020
[53]   Bonnardel J, T’Jonck W, Gaublomme D, et al. Stellate cells, hepatocytes, and endothelial cells imprint the kupffer cell identity on monocytes colonizing the liver macrophage niche. Immunity, 2019, 51(4): 638-654.e9.
doi: S1074-7613(19)30368-1 pmid: 31561945
[54]   Si-Tayeb K, Lemaigre F P, Duncan S A. Organogenesis and development of the liver. Developmental Cell, 2010, 18(2): 175-189.
doi: 10.1016/j.devcel.2010.01.011 pmid: 20159590
[55]   Joshi M, Patil P B, He Z, et al. Fetal liver-derived mesenchymal stromal cells augment engraftment of transplanted hepatocytes. Cytotherapy, 2012, 14(6): 657-669.
doi: 10.3109/14653249.2012.663526 pmid: 22424216
[56]   Mederacke I, Hsu C C, Troeger J S, et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nature Communications, 2013, 4(1): 1-11.
[57]   Li Y, Zhao D Y, Qian M Y, et al. Amlodipine, an anti-hypertensive drug, alleviates non-alcoholic fatty liver disease by modulating gut microbiota. British Journal of Pharmacology, 2022, 179(9): 2054-2077.
doi: 10.1111/bph.v179.9
[58]   Zandi Shafagh R, Youhanna S, Keulen J, et al. Bioengineered pancreas-liver crosstalk in a microfluidic coculture chip identifies human metabolic response signatures in prediabetic hyperglycemia. Advanced Science, 2022, 9(34): 2203368.
doi: 10.1002/advs.v9.34
[59]   Wu Y R, Wong C W, Chiles E N, et al. Glycerate from intestinal fructose metabolism induces islet cell damage and glucose intolerance. Cell Metabolism, 2022, 34(7): 1042-1053.e6.
doi: 10.1016/j.cmet.2022.05.007 pmid: 35688154
[60]   Svegliati-Baroni G, Patrício B, Lioci G, et al. Gut-pancreas-liver axis as a target for treatment of NAFLD/NASH. International Journal of Molecular Sciences, 2020, 21(16): 5820.
doi: 10.3390/ijms21165820
[61]   Garber K. RIKEN suspends first clinical trial involving induced pluripotent stem cells. Nature Biotechnology, 2015, 33(9): 890-891.
doi: 10.1038/nbt0915-890 pmid: 26348942
[62]   Rouhani F J, Zou X Q, Danecek P, et al. Substantial somatic genomic variation and selection for BCOR mutations in human induced pluripotent stem cells. Nature Genetics, 2022, 54(9): 1406-1416.
doi: 10.1038/s41588-022-01147-3 pmid: 35953586
[1] WAN Yue, ZHOU Bin, GAO Rui, CHEN Hui, GAO Miao-miao, WANG Xiao-fang, DONG Dian-dian, XIANG Shen-si, YANG Xiao-ming, YU Miao. LAG-3 Knockout Exacerbates Immune Liver Injury[J]. China Biotechnology, 2023, 43(8): 38-51.
[2] Lin-ying LIU, Jie SHEN, Liang CHEN, Hu-cheng ZHANG, Xin-ying ZHAO. Biomimetic Nanomedicine Delivery System Preparation and Disease Therapy Application[J]. China Biotechnology, 2023, 43(7): 114-121.
[3] ZHANG Ya-ru, WANG Hui-mei, CHI Yon-jie, GAO Yuan, ZHAO Ying, BAO Jia-xin, ZHANG Jin, WANG Lian-yan. Research Progress of mRNA Vaccines and Polymer-based Delivery Systems[J]. China Biotechnology, 2023, 43(5): 55-68.
[4] HAN Jia, ZHANG Bo-wen, MAO Kai-yun. Analysis of R&D Structure of New Drug Delivery Systems[J]. China Biotechnology, 2023, 43(2/3): 1-14.
[5] ZHANG Wen-hui, YAN Jian-yuan, CHEN Yu-ping. The Progress of Hydrophobin-based Drug Delivery System[J]. China Biotechnology, 2023, 43(2/3): 15-25.
[6] HAO Dong-xia, TIAN Meng-yuan, LIU Yang, LI Xing, ZHANG Yuan. Basic Properties and Applications of Milk Exosomes[J]. China Biotechnology, 2023, 43(2/3): 26-42.
[7] MA Pin-pin, XIONG Xiang-yuan. Polymeric Nanomaterials Used in Oral Insulin Delivery Systems[J]. China Biotechnology, 2023, 43(2/3): 43-53.
[8] JIN Zhe-tong,RUI Xue,JIANG Hou-zhe,WANG Jing-jing,CHEN Yu-gen. Research Progress of Non-viral Vector Delivery System for mRNA Vaccines[J]. China Biotechnology, 2022, 42(9): 58-66.
[9] ZHAO Bing,MA Chun-bo,SUN Bing-bing,ZHAO Hai-yang. Research Progress of Intelligent Insulin Delivery System for Diabetes Treatment[J]. China Biotechnology, 2022, 42(5): 81-90.
[10] Yu WANG,Yue-qiu BAI,Yi-xiao TIAN,Xin-yue WANG,Qing-sheng HUANG. Advances and Prospects of mRNA Vaccines Used in the Prevention and Therapies of Diseases[J]. China Biotechnology, 2022, 42(10): 51-59.
[11] LV Hui-zhong,ZHAO Chen-chen,ZHU Lian,XU Na. Progress of Using Exosome for Drug Targeted Delivery in Tumor Therapy[J]. China Biotechnology, 2021, 41(5): 79-86.
[12] HU Sheng-tao,ZHANG Er-bing,LIN Ye,ZHANG Feng,HUANG Dan,SONG Hou-pan,LIU Bin,CAI Xiong. Research Advances on the Therapy of Rheumatoid Arthritis with the Nanotechnology Based on Transdermal Drug Delivery System[J]. China Biotechnology, 2021, 41(2/3): 98-106.
[13] WU You,XIN Lin. New Drug Delivery System: Delivery of Exosomes as Drug Carriers[J]. China Biotechnology, 2020, 40(9): 28-35.
[14] YANG Wei,SONG Fang-xiang,WANG Shuai,ZHANG Li,WANG Hong-xia,LI Yan. Preparation and Application of Janus Nanoparticles in Drug Delivery System[J]. China Biotechnology, 2020, 40(7): 70-81.
[15] CHENG Ping,ZHANG Yang-zi,MA Xuan,CHEN Xu,ZHU Bao-qing,XU Wen-tao. Properties and Applications of Stimuli-Responsive DNA Hydrogels[J]. China Biotechnology, 2020, 40(3): 132-143.