Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (12): 79-90    DOI: 10.13523/j.cb.2207014
    
Research Progress of Function and Biosynthesis of Coumarins
WANG Rong-xiang1,2,SONG Jia2,SUN Bo2,YAN Xue3,ZHANG Wan-zhong1,**(),ZHAO Chen2,**()
1 College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
2 National Engineering Research Center of Grain Storage and Logistics, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
3 Key Laboratory of Quality Control for Feed and Products of Livestock and Poultry of Sichuan Province, New Hope Liuhe Limited Company, Chengdu 610023, China
Download: HTML   PDF(1377KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Coumarins are important compounds in nature. They show a wide range of applications, due to their multiple bio-activities such as antitumor, anticoagulation, antibacterial, and insecticidal. At present, most of these compounds are obtained through plant extraction, which is greatly affected by environmental factors, resulting in low yield and high cost, and therefore is not conducive to large-scale production and hinders their application. Instead, the biosynthesis process is controllable. It becomes a research hotspot to develop industrialized production technology of target natural products through optimization of the biosynthetic expression elements, host and fermentation conditions. However, mining of key enzymes in the biosynthetic pathway is still a difficult task in this research field. In this paper, the structure, function and biosynthesis of some coumarins and their derivatives are reviewed, which provides a reference for gene mining and heterologous expression of the synthetic pathways of these compounds.



Key wordsCoumarin compounds      Biosynthesis      Bio-activity      Heterologous expression     
Received: 08 July 2022      Published: 05 January 2023
ZTFLH:  Q819  
Corresponding Authors: Wan-zhong ZHANG,Chen ZHAO     E-mail: lzwz2004@sina.com;zc@ags.ac.cn
Cite this article:

WANG Rong-xiang,SONG Jia,SUN Bo,YAN Xue,ZHANG Wan-zhong,ZHAO Chen. Research Progress of Function and Biosynthesis of Coumarins. China Biotechnology, 2022, 42(12): 79-90.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2207014     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I12/79

Fig.1 Types and representative compounds of coumarins (a) Coumarin matrix (b) Simple coumarins (c) Linear furanocoumarins (d) Angular furanocoumarins (e) Linear pyranocoumarins (f) Angular pyranocoumarins (g) (h) Other coumarins
名称 结构 主要功能 参考文献
欧前胡素(imperatorin) 抗炎、抗菌、抗病毒、抗癌、逆转癌细胞耐药性、治疗心血管及神经系统疾病,等 [5]
东莨菪素(scopoletin) 抗癌、抗炎、镇痛、降血压、降血脂,等 [6]
花椒毒素(zanthoxylin) 抗氧化,等 [7]
蛇床子素(osthol) 抗炎止痛、抗菌止痒、抗氧化和神经保护,等 [8]
异补骨脂素(angelicin) 抗糖尿病、抗癌、抗病毒,等 [9]
佛手柑内酯(bergamot lactone) 抗肿瘤、调节血糖、改善失眠、防治骨质疏松、抗衰老、抗炎、抗过敏,等 [10]
七叶内酯(esculetin) 抗肿瘤、抗乙型肝炎病毒 [11]
艾芦司他(irosustat) 抗肿瘤(已进入临床试验阶段) [12]
7-羟基香豆素(7-hydroxycoumarin) 荧光化合物、防晒剂、抑菌 [13]
香豆素A9(coumarin A9) 抗横纹病毒 [14]
补骨脂定(psoralidin) 抗骨质疏松 [15]
华法林(warfarin) 香豆素类口服抗凝药 [16]
4-羟基香豆素(4-hydroxycoumarin) 亲电和亲核性质,抗凝血、抗菌、抗病毒、抗肿瘤,等 [17]
Table 1 Structure and function of common coumarin compounds and their derivatives
Fig.2 Biosynthetic pathway of coumarins
Fig.3 Shikimic acid pathway PpsA: Phosphoenolpyruvate synthase; TktA: Transketolase; DAHPS: 3-Deoxy-arabinoheptose-7-phosphate synthetase; DHQS: 3-Dehydroquinate synthase; AroD: 3-Dehydroquinic acid dehydratase; SDH: Shikimate dehydrogenase; AroL/AroK: Shikimate kinase isozyme; EPSPs: 5-Enolpyruvylshikimate-3-phosphate synthase; CS: Chorismate synthase
[1]   聂凯强, 申霖. 香豆素类化合物的合成方法及发展概述. 有机化学研究, 2018, 6(1): 9-18.
doi: 10.12677/JOCR.2018.61002
[1]   Nie K Q, Shen L. Synthesis and development of coumarin compounds. Journal of Organic Chemistry Research, 2018, 6(1): 9-18.
doi: 10.12677/JOCR.2018.61002
[2]   Qin H L, Zhang Z W, Ravindar L, et al. Antibacterial activities with the structure-activity relationship of coumarin derivatives. European Journal of Medicinal Chemistry, 2020, 207: 112832.
doi: 10.1016/j.ejmech.2020.112832
[3]   Ren Q C, Gao C, Xu Z, et al. Bis-coumarin derivatives and their biological activities. Current Topics in Medicinal Chemistry, 2018, 18(2): 101-113.
doi: 10.2174/1568026618666180221114515
[4]   Brennan M A, Cookson B T. Salmonella induces macrophage death by caspase-1-dependent necrosis. Molecular Microbiology, 2000, 38(1): 31-40.
pmid: 11029688
[5]   李晓强, 谭余庆, 李慧杰, 等. 欧前胡素药理作用及机制研究进展. 中国实验方剂学杂志, 2020, 26(18): 196-201.
[5]   Li X Q, Tan Y Q, Li H J, et al. Research progress on pharmacological effect and mechanism of imperatorin. Chinese Journal of Experimental Traditional Medical Formulae, 2020, 26(18): 196-201.
[6]   魏丽娟, 周金培, 戴岳. 天然产物东莨菪素的研究进展. 海峡药学, 2009, 21(4): 10-13.
[6]   Wei L J, Zhou J P, Dai Y. Progress in the study of natural product scopoletin. Strait Pharmaceutical Journal, 2009, 21(4): 10-13.
[7]   Shu P H, Li J P, Fei Y Y, et al. Isolation, structure elucidation, tyrosinase inhibitory, and antioxidant evaluation of the constituents from Angelica dahurica roots. Journal of Natural Medicines, 2020, 74(2): 456-462.
doi: 10.1007/s11418-019-01375-8
[8]   都梦帆, 向汝, 范妤, 等. 蛇床子素的药理作用及抗炎活性机制研究进展. 云南中医学院学报, 2020, 43(6): 92-98.
[8]   Du M F, Xiang R, Fan Y, et al. A review on the anti-inflammatory effects and mechanisms of osthole. Journal of Yunnan University of Traditional Chinese Medicine, 2020, 43(6): 92-98.
[9]   Lee T H, Chen Y C, Hwang T L, et al. New coumarins and anti-inflammatory constituents from the fruits of Cnidium monnieri. International Journal of Molecular Sciences, 2014, 15(6): 9566-9578.
doi: 10.3390/ijms15069566
[10]   谢术欢, 冯玛莉. 佛手柑内酯药理作用研究进展. 海南医学院学报, 2021. DOI: 10.13210/j.cnki.jhmu.20210507.003.
doi: 10.13210/j.cnki.jhmu.20210507.003
[10]   Xie S H, Feng M L. Advances in pharmacological action of bergamot lactone. Journal of Hainan Medical College, 2021. DOI: 10.13210/j.cnki.jhmu.20210507.003.
doi: 10.13210/j.cnki.jhmu.20210507.003
[11]   叶蓁, 罗琴, 李善斌, 等. 七叶内酯衍生物的合成及其生物活性. 广东化工, 2020, 47(24): 13-15.
[11]   Ye Z, Luo Q, Li S B, et al. Synthesis and biological activities of esculetin derivatives. Guangdong Chemical Industry, 2020, 47(24): 13-15.
[12]   Palmieri C, Januszewski A, Stanway S, et al. Irosustat: a first-generation steroid sulfatase inhibitor in breast cancer. Expert Review of Anticancer Therapy, 2011, 11(2): 179-183.
doi: 10.1586/era.10.201 pmid: 21342037
[13]   张国财, 安吉缘, 徐震霆, 等. 7-羟基香豆素的抑菌活性及其稳定性研究. 西南林业大学学报(自然科学), 2022, 42(2): 77-82.
[13]   Zhang G C, An J Y, Xu Z T, et al. Study on the antifungal activity and stability of 7-hydroxycoumarin. Journal of Southwest Forestry University (Natural Sciences), 2022, 42(2): 77-82.
[14]   Hu Y, Shan L P, Qiu T X, et al. Synthesis and biological evaluation of novel coumarin derivatives in rhabdoviral clearance. European Journal of Medicinal Chemistry, 2021, 223: 113739.
doi: 10.1016/j.ejmech.2021.113739
[15]   Zhai Y K, Li Y Y, Wang Y P, et al. Psoralidin, a prenylated coumestan, as a novel anti-osteoporosis candidate to enhance bone formation of osteoblasts and decrease bone resorption of osteoclasts. European Journal of Pharmacology, 2017, 801: 62-71.
doi: S0014-2999(17)30152-8 pmid: 28283388
[16]   Lei L, Xue Y B, Liu Z, et al. Coumarin derivatives from Ainsliaea fragrans and their anticoagulant activity. Scientific Reports, 2015, 5: 13544.
doi: 10.1038/srep13544
[17]   权彦, 李小蓉, 刘靖丽. 4-羟基香豆素衍生物的微波合成、表征及抗凝血研究. 中国新药杂志, 2018, 27(8): 921-926.
[17]   Quan Y, Li X R, Liu J L. Microwave synthesis, characterization and anticoagulant study of novel 4-hydroxy coumarin derivatives. Chinese Journal of New Drugs, 2018, 27(8): 921-926.
[18]   Konkol'ová E, Hudáčová M, Hamul'aková S, et al. Tacrine-coumarin derivatives as topoisomerase inhibitors with antitumor effects on A549 human lung carcinoma cancer cell lines. Molecules (Basel, Switzerland), 2021, 26(4): 1133.
[19]   黄思思, 周芊芊, 罗婷, 等. 香豆素类化合物抗肿瘤机制的研究进展. 上海医药, 2022, 43(1): 70-74.
[19]   Huang S S, Zhou Q Q, Luo T, et al. Research progress in anti-cancer mechanism of coumarins. Shanghai Medical & Pharmaceutical Journal, 2022, 43(1): 70-74.
[20]   Sokol I, Toma M, Krnić M, et al. Transition metal-catalyzed synthesis of new 3-substituted coumarin derivatives as antibacterial and cytostatic agents. Future Medicinal Chemistry, 2021, 13(21): 1865-1884.
[21]   Shan L P, Zhou Y, Yan M C, et al. A novel antiviral coumarin derivative as a potential agent against WSSV infection in shrimp seedling culture. Virus Research, 2021, 297: 198387.
doi: 10.1016/j.virusres.2021.198387
[22]   Li W B, Qiao X P, Wang Z X, et al. Synthesis and antioxidant activity of conjugates of hydroxytyrosol and coumarin. Bioorganic Chemistry, 2020, 105: 104427.
doi: 10.1016/j.bioorg.2020.104427
[23]   Zhang J X, Lv J H, Zhao L Q, et al. Coumarin-pi, a new antioxidant coumarin derivative from Paxillus involutus. Natural Product Research, 2020, 34(9): 1246-1249.
doi: 10.1080/14786419.2018.1557170
[24]   Ming L G, Zhou J, Cheng G Z, et al. Osthol, a coumarin isolated from common cnidium fruit, enhances the differentiation and maturation of osteoblasts in vitro. Pharmacology, 2011, 88(1-2): 33-43.
doi: 10.1159/000328776
[25]   刘佳. 呋喃香豆素类化合物的合成及其抑菌活性、荧光特性的研究. 南京: 南京农业大学, 2016.
[25]   Liu J. The synthesis, antifungal activity and fluorescent property of furanocoumarin derivatives. Nanjing: Nanjing Agricultural University, 2016.
[26]   陈力, 阿布力孜·达吾提, 周乐. 植物源杀虫剂蛇床子素防治帕米尔高原地区草原蝗虫效果初报. 草食家畜, 2021(2): 55-58.
[26]   Chen L, Dawuti A, Zhou L. Preliminary evaluation on the efficacy of osthol for controlling grasshoppers in Pamir plateau. Grass-Feeding Livestock, 2021(2): 55-58.
[27]   Hazleton L W, Murer H K, Thiessen R Jr, et al. Toxicity of coumarin. The Journal of Pharmacology and Experimental Therapeutics, 1956, 118(3): 348-358.
[28]   孔令雷, 胡金凤, 陈乃宏. 香豆素类化合物药理和毒理作用的研究进展. 中国药理学通报, 2012, 28(2): 165-168.
[28]   Kong L L, Hu J F, Chen N H. Advances in pharmacology and toxicology of coumarins. Chinese Pharmacological Bulletin, 2012, 28(2): 165-168.
[29]   梅家齐, 杨得坡. 呋喃香豆素光化学毒性及其脱敏柑橘精油的研制. 香料香精化妆品, 2010(5): 55-58.
[29]   Mei J Q, Yang D P. Phototoxicity of furanocoumarins and preparation of furanocoumarin free citrus oil. Flavour Fragrance Cosmetics, 2010(5): 55-58.
[30]   Qi S J, Li Q, Liu W M, et al. Coumarin/Fluorescein-fused fluorescent dyes for rapidly monitoring mitochondrial pH changes in living cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 204: 590-597.
doi: 10.1016/j.saa.2018.06.095
[31]   Zhao Y C, Jian X Y, Wu J L, et al. Elucidation of the biosynthesis pathway and heterologous construction of a sustainable route for producing umbelliferone. Journal of Biological Engineering, 2019, 13: 44.
doi: 10.1186/s13036-019-0174-3 pmid: 31139252
[32]   Bruni R, Barreca D, Protti M, et al. Botanical sources, chemistry, analysis, and biological activity of furanocoumarins of pharmaceutical interest. Molecules (Basel, Switzerland), 2019, 24(11): 2163.
doi: 10.3390/molecules24112163
[33]   Bourgaud F, Hehn A, Larbat R, et al. Biosynthesis of coumarins in plants: a major pathway still to be unravelled for cytochrome P450 enzymes. Phytochemistry Reviews, 2006, 5(2-3): 293-308.
doi: 10.1007/s11101-006-9040-2
[34]   江舟. 植物香豆素生物合成途径及关键酶基因的研究现状. 现代园艺, 2022, 45(12): 189-191.
[34]   Jiang Z. Research status of coumarin biosynthesis pathway and key enzyme genes in plants. Contemporary Horticulture, 2022, 45(12): 189-191.
[35]   Zhang F, Ren J, Zhan J X. Identification and characterization of an efficient phenylalanine ammonia-lyase from Photorhabdus luminescens. Applied Biochemistry and Biotechnology, 2021, 193(4): 1099-1115.
doi: 10.1007/s12010-020-03477-6 pmid: 33411135
[36]   Wang Z W, Jian X Y, Zhao Y C, et al. Functional characterization of cinnamate 4-hydroxylase from Helianthus annuus Linn using a fusion protein method. Gene, 2020, 758: 144950.
doi: 10.1016/j.gene.2020.144950
[37]   Kai K, Mizutani M, Kawamura N, et al. Scopoletin is biosynthesized via ortho-hydroxylation of feruloyl CoA by a 2-oxoglutarate-dependent dioxygenase in Arabidopsis thaliana. The Plant Journal, 2008, 55(6): 989-999.
doi: 10.1111/j.1365-313X.2008.03568.x
[38]   Duan Z, Yan Q, Wu F, et al. Genome-wide analysis of the UDP-glycosyltransferase family reveals its roles in coumarin biosynthesis and abiotic stress in Melilotus albus. International Journal of Molecular Sciences, 2021, 22(19): 10826.
doi: 10.3390/ijms221910826
[39]   Xu X P, Yan Y R, Huang W Q, et al. Molecular cloning and biochemical characterization of a new coumarin glycosyltransferase CtUGT 1 from Cistanche tubulosa. Fitoterapia, 2021, 153: 104995.
doi: 10.1016/j.fitote.2021.104995
[40]   Vanholme R, Sundin L, Seetso K C, et al. COSY catalyses trans-cis isomerization and lactonization in the biosynthesis of coumarins. Nature Plants, 2019, 5(10): 1066-1075.
doi: 10.1038/s41477-019-0510-0 pmid: 31501530
[41]   Villard C, Munakata R, Kitajima S, et al. A new P450 involved in the furanocoumarin pathway underlies a recent case of convergent evolution. New Phytologist, 2021, 231(5): 1923-1939.
doi: 10.1111/nph.17458
[42]   Jian X Y, Zhao Y C, Wang Z W, et al. Two CYP71AJ enzymes function as psoralen synthase and angelicin synthase in the biosynthesis of furanocoumarins in Peucedanum praeruptorum Dunn. Plant Molecular Biology, 2020, 104(3): 327-337.
doi: 10.1007/s11103-020-01045-4
[43]   吴涛, 赵津津, 毛贤军. 大肠杆菌磷酸烯醇式丙酮酸-糖磷酸转移酶系统改造对产L-色氨酸的影响. 生物工程学报, 2017, 33(11): 1877-1882.
[43]   Wu T, Zhao J J, Mao X J. Effect of PTS modifications on L-tryptophan production in Escherichia coli. Chinese Journal of Biotechnology, 2017, 33(11): 1877-1882.
[44]   张培, 侯云龙, 苏敏, 等. 当归咖啡酸-O-甲基转移酶基因的克隆与表达分析. 中国野生植物资源, 2021, 40(1): 20-28.
[44]   Zhang P, Hou Y L, Su M, et al. Cloning and expression analysis of caffeic acid-O-methyltransferase gene in Angelica sinensis. Chinese Wild Plant Resources, 2021, 40(1): 20-28.
[45]   Bu X L, He B B, Weng J Y, et al. Constructing microbial hosts for the production of benzoheterocyclic derivatives. ACS Synthetic Biology, 2020, 9(9): 2282-2290.
doi: 10.1021/acssynbio.9b00405
[46]   赵晨晖. 设计构建酿酒酵母转化木质素生产香豆素类化合物. 天津: 天津大学, 2020.
[46]   Zhao C H. Engineering Saccharomyces cerevisiae for the production of coumarins from lignin. Tianjin: Tianjin University, 2020.
[47]   Vannelli T, Wei W Q, Sweigard J, et al. Production of p-hydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Escherichia coli by expression of heterologous genes from plants and fungi. Metabolic Engineering, 2007, 9(2): 142-151.
doi: 10.1016/j.ymben.2006.11.001 pmid: 17204442
[48]   陈鑫洁, 钱芷兰, 刘启, 等. 毕赤酵母底盘芳香族氨基酸合成途径改造生产肉桂酸及对香豆酸. 中国生物工程杂志, 2021, 41(10): 52-61.
[48]   Chen X J, Qian Z L, Liu Q, et al. Modification of aromatic amino acid synthetic pathway in Pichia pastoris to produce cinnamic acid and ρ-coumaric acid. China Biotechnology, 2021, 41(10): 52-61.
[49]   Liu Q L, Yu T, Li X W, et al. Rewiring carbon metabolism in yeast for high level production of aromatic chemicals. Nature Communications, 2019, 10(1): 4976.
doi: 10.1038/s41467-019-12961-5 pmid: 31672987
[50]   张思琪, 周景文, 张国强, 等. 产对香豆酸酿酒酵母工程菌株的构建与优化. 生物工程学报, 2020, 36(9): 1838-1848.
doi: 10.13345/j.cjb.200003 pmid: 33164460
[50]   Zhang S Q, Zhou J W, Zhang G Q, et al. Construction and optimization of p-coumaric acid-producing Saccharomyces cerevisiae. Chinese Journal of Biotechnology, 2020, 36(9): 1838-1848.
doi: 10.13345/j.cjb.200003 pmid: 33164460
[51]   Zeng F X, Lu T, Wang J, et al. Design, synthesis and bioactivity evaluation of coumarin-BMT hybrids as new acetylcholinesterase inhibitors. Molecules (Basel, Switzerland), 2022, 27(7): 2142.
doi: 10.3390/molecules27072142
[52]   Jin Y, Ding Y H, Dong J J, et al. Design, synthesis and agricultural evaluation of derivatives of N-Acyl-N-(m-fluoro-benzyl)-6-amino-coumarin. Natural Product Research, 2022, 36(3): 798-804.
doi: 10.1080/14786419.2020.1806268
[53]   张发光, 曲戈, 孙周通, 等. 从化学合成到生物合成——天然产物全合成新趋势. 合成生物学, 2021, 2(5): 674-696.
doi: 10.12211/2096-8280.2021-039
[53]   Zhang F G, Qu G, Sun Z T, et al. From chemical synthesis to biosynthesis: trends toward total synthesis of natural products. Synthetic Biology Journal, 2021, 2(5): 674-696.
doi: 10.12211/2096-8280.2021-039
[1] BIAN Yi-fan,LIU Shu-han,ZHANG Bei-meng,ZHANG Yu-long,LI Xin-tong,WANG Peng-chao. Advances in Microbial Synthesis of 2-Phenylethanol[J]. China Biotechnology, 2022, 42(8): 128-136.
[2] Qiong WU,Xin ZHAO,Yu-yao DU,Shu-hong MAO. Co-expression and Functional Analysis of Cytochrome P450 Reductase and CYP17[J]. China Biotechnology, 2022, 42(10): 1-8.
[3] JI Chuan-fu,WANG Lu,GOU Min,SONG Wen-feng,XIA Zi-yuan,TANG Yue-qin. The Review of Biosynthesis and Molecular Regulation of Xanthan Gum[J]. China Biotechnology, 2022, 42(1/2): 46-57.
[4] ZHANG Heng,LIU Hui-yan,PAN Lin,WANG Hong-yan,LI Xiao-fang,WANG Tong,FANG Hai-tian. Research Strategy for Biosynthesis of Gamma Aminobutyric Acid[J]. China Biotechnology, 2021, 41(8): 110-119.
[5] LI Bing,ZHANG Chuan-bo,SONG Kai,LU Wen-yu. Research Progress in Biosynthesis of Rare Ginsenosides[J]. China Biotechnology, 2021, 41(6): 71-88.
[6] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[7] ZHAI Jun-ye,CHENG Xu,SUN Ze-min,LI Chun,LV Bo. Current Advances in Biosynthesis of Acteoside[J]. China Biotechnology, 2021, 41(5): 94-104.
[8] WANG Guang-lu, WANG Meng-yuan, ZHOU Yi-fei, MA Ke, ZHANG Fan, YANG Xue-peng. Research Progress in Pyrrologuinoline Quinone Biosynthesis[J]. China Biotechnology, 2021, 41(1): 103-113.
[9] GUO Er-peng, ZHANG Jian-zhi, SI Tong. Recent Advances in the High-throughput Engineering of Lanthipeptides[J]. China Biotechnology, 2021, 41(1): 30-41.
[10] LIU Xiao-chen, FAN Dai-di, YANG Fan, WU Zhan-sheng. Advances in Microbial Production of Ginsenoside and Its Derivatives[J]. China Biotechnology, 2021, 41(1): 80-93.
[11] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[12] DUAN Hai-rong,WEI Sai-jin,LI Xun-hang. Advances in Rhamnolipid Biosynthesis by Pseudomonas aeruginosa Research[J]. China Biotechnology, 2020, 40(9): 43-51.
[13] DENG Ting-shan,WU Guo-gan,SUN Yu,TANG Xue-ming. Advances in Biosynthesis of Phenyllactic Acid[J]. China Biotechnology, 2020, 40(9): 62-68.
[14] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.
[15] WEI Wei,CHANG Bao-gen,WANG Ying,LU Fu-ping,LIU Fu-feng. Heterologous Expression, Purification and Aggregation Characterization of Tau Core Fragment 306-378[J]. China Biotechnology, 2020, 40(5): 22-29.