Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (5): 27-36    DOI: 10.13523/j.cb.2112042
    
XIAP Mediated-PTEN Neddylation Promotes Proliferation and Migration of Colon Cancer Cells
YUAN Shu-hui1,3,LI Shao-hua2,FANG Wei2,PENG Zhi-qiang3,ZHANG Ling-qiang1,3,**()
1 School of Basic Medicine, Qingdao 266071, China
2 Shanghai Fengxian Central Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai 201499, China
3 State Key Laboratory of Proteomics, Beijing National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
Download: HTML   PDF(3432KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To explore the functional role of XIAP-PTEN neddylation axis in colorectal cancer at cell line and clinical level. Methods: The expression level of XIAP was analyzed in tissue microarray of colorectal cancer by immunohistochemical staining, and the protein level of XIAP was detected in human colorectal cancer and adjacent normal tissues by Western blot. Co-IP was performed to analyze the interaction between endogenous PTEN and XIAP in SW480 cell line. CRISPR Cas9 technology was used to construct XIAP-knockout SW480 cell line, and the neddylation level of PTEN was analyzed in sg-XIAP cells by immunoprecipitation and Western blot. XIAP knockout or wild type SW480 cell lines were co-transfected with FLAG-Vector or FLAG-PTEN-Nedd8 plasmid, and then CCK8 and Transwell experiments were used to assay the proliferation and migration of XIAP-PTEN neddylation axis in SW480 cells, respectively. Results: The expression levels of XIAP were up-regulated in colon and rectum cancer tissues compared with adjacent normal tissues. XIAP interacted with PTEN in SW480 colon cancer cells. Deletion of XIAP inhibited PTEN neddylation in SW480 cells. The level of PTEN neddylation was elevated in colorectal cancer tissues compared with adjacent normal tissues. Deletion of XIAP inhibited the proliferation and migration of SW480 cells significantly, while PTEN-Nedd8 fusion protein rescued the phenotypes of XIAP deletion in SW480 cells. Conclusion: XIAP-PTEN neddylation axis promotes SW480 colon cancer cell proliferation and migration.



Key wordsColorectal cancer      XIAP      PTEN neddylation      Proliferation      Migration     
Received: 19 December 2021      Published: 17 June 2022
ZTFLH:  Q28  
Corresponding Authors: Ling-qiang ZHANG     E-mail: zhanglq@nic.bmi.ac.cn
Cite this article:

YUAN Shu-hui,LI Shao-hua,FANG Wei,PENG Zhi-qiang,ZHANG Ling-qiang. XIAP Mediated-PTEN Neddylation Promotes Proliferation and Migration of Colon Cancer Cells. China Biotechnology, 2022, 42(5): 27-36.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2112042     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I5/27

Fig.1 XIAP is highly expressed in colorectal cancer (a) Analysis of XIAP protein expression levels in normal colorectal tissues and colorectal cancer tissues from CPTAC database (b) Immunohistochemical staining for XIAP in colon cancer and adjacent tissues (left), analysis of XIAP immunohistochemical staining in colon cancer and adjacent tissues by Image Pro Plus (right) (c) Immunohistochemical staining for XIAP in rectal cancer and adjacent tissues (left), analysis of XIAP immunohistochemical staining in rectal cancer and adjacent tissues by Image Pro Plus (right) (d) Analysis of XIAP immunohistochemical staining in different stages of colorectal cancer by Image Pro Plus (e) Western blot analysis of XIAP expression in colorectal cancer and adjacent tissues. N(normal), C(cancer). Scale bars, 100 μm.* P<0.05
Fig.2 There was a significant positive correlation between XIAP expression and PTEN neddylation level in colorectal cancer (a) Co-immunoprecipitation analysis the interaction between XIAP and PTEN in SW480 cells (b) Immunoprecipitation analysis of the level of PTEN neddylation in WT and XIAP knockout SW480 cells (c) Immunoprecipitation analysis the expression of XIAP and AKT pathway in colorectal cancer and adjacent tissues. N(normal), C(cancer)
Fig.3 XIAP promotes the proliferation and migration of colorectal cancer cells by mediating PTEN neddylation modification (a)Western blot analysis of XIAP knockout efficiency and FLAG-PTEN-Nedd8(N8) transfection efficiency (b) The proliferation ability of WT (sg-NC) and XIAP knockout (sg-XIAP) SW480 cells after transfecting PTEN-Nedd8(N8) or re-NC was measured by CCK8 (c) The migration ability of WT (sg-NC) and XIAP knockout (sg-XIAP) SW480 cells after transfecting PTEN-Nedd8(N8) or re-NC was measured by Transwell assay. Scale bars, 500 μm.** P<0.01, *** P<0.001; ns: Non significance
Fig.4 The combination of MLN4924 and C75 synergistically inhibited the proliferation and migration of SW480 cells (a) Cell treated with no agent (control),1 μmol/L MLN4924, 10 μmol/L C75 or 1 μmol/L MLN4924 plus 10 μmol/L C75. Western blot analysis of the efficacy of MLN4924 and C75 (b) CCK8 assay was used to detect the effects of MLN4924 and C75 on SW480 cell proliferation (c) Transwell assay was used to detect the effects of MLN4924 and C75 on SW480 cell migration. Scale bars, 500 μm. * P<0.05, ** P<0.01, *** P<0.001, **** P<0.000 1
[1]   Cao M M, Li H, Sun D Q, et al. Cancer burden of major cancers in China: a need for sustainable actions. Cancer Communications, 2020, 40(5): 205-210.
doi: 10.1002/cac2.12025
[2]   Siegel R L, Miller K D, Jemal A. Cancer statistics, 2020. CA: A Cancer Journal for Clinicians, 2020, 70(1): 7-30.
doi: 10.3322/caac.21590
[3]   Sansom O J, Meniel V, Wilkins J A, et al. Loss of Apc allows phenotypic manifestation of the transforming properties of an endogenous K-ras oncogene in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(38): 14122-14127.
[4]   Chen J, Guo F, Shi X, et al. BRAF V600E mutation and KRAS Codon 13 mutations predict poor survival in Chinese colorectal cancer patients. BMC Cancer, 2014, 14: 802.
doi: 10.1186/1471-2407-14-802
[5]   Alitalo K, Schwab M, Lin C C, et al. Homogeneously staining chromosomal regions contain amplified copies of an abundantly expressed cellular oncogene (c-myc) in malignant neuroendocrine cells from a human colon carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 1983, 80(6): 1707-1711.
[6]   Ashton-Rickardt P G, Dunlop M G, Nakamura Y, et al. High frequency of APC loss in sporadic colorectal carcinoma due to breaks clustered in 5q21-22. Oncogene, 1989, 4(10): 1169-1174.
pmid: 2797819
[7]   Muzny D M, Bainbridge M N, Chang K, et al. Comprehensive molecular characterization of human colon and rectal cancer. Nature, 2012, 487 (7407): 330-337.
doi: 10.1038/nature11252
[8]   Nishisho I, Nakamura Y, Miyoshi Y, et al. Mutations of chromosome 5q 21 genes in FAP and colorectal cancer patients. Science, 1991, 253(5020): 665-669.
doi: 10.1126/science.1651563 pmid: 1651563
[9]   Wang Y, Cao Y, Huang X, et al. Allele-specific expression of mutated in colorectal cancer (MCC) gene and alternative susceptibility to colorectal cancer in schizophrenia. Scientific Reports, 2016, 6: 26688.
doi: 10.1038/srep26688
[10]   Akkiprik M, Ataizi-Celikel C, Düᶊünceli F, et al. Clinical significance of p53, K-ras and DCC gene alterations in the stage I-II colorectal cancers. Journal of Gastrointestinal and Liver Diseases: JGLD, 2007, 16(1): 11-17.
[11]   Djansugurova L, Zhunussova G, Khussainova E, et al. Association of DCC, MLH1, GSTT1, GSTM1, and TP53 gene polymorphisms with colorectal cancer in Kazakhstan. Tumor Biology, 2015, 36(1): 279-289.
doi: 10.1007/s13277-014-2641-2
[12]   Kleivi K, Lind G E, Diep C B, et al. Gene expression profiles of primary colorectal carcinomas, liver metastases, and carcinomatoses. Molecular Cancer, 2007, 6: 2.
doi: 10.1186/1476-4598-6-2
[13]   Markowitz S D, Bertagnolli M M. Molecular origins of cancer: molecular basis of colorectal cancer. The New England Journal of Medicine, 2009, 361(25): 2449-2460.
doi: 10.1056/NEJMra0804588 pmid: 20018966
[14]   Álvarez-Garcia V, Tawil Y, Wise H M, et al. Mechanisms of PTEN loss in cancer: It’s all about diversity. Seminars in Cancer Biology, 2019, 59: 66-79.
doi: S1044-579X(18)30059-2 pmid: 30738865
[15]   Song M S, Salmena L, Pandolfi P P. The functions and regulation of the PTEN tumour suppressor. Nature Reviews Molecular Cell Biology, 2012, 13(5): 283-296.
doi: 10.1038/nrm3330 pmid: 22473468
[16]   Okumura K, Mendoza M, Bachoo R M, et al. PCAF modulates PTEN activity. Journal of Biological Chemistry, 2006, 281(36): 26562-26568.
doi: 10.1074/jbc.M605391200 pmid: 16829519
[17]   Trotman L C, Wang X J, Alimonti A, et al. Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell, 2007, 128(1): 141-156.
doi: 10.1016/j.cell.2006.11.040 pmid: 17218261
[18]   van Themsche C, Leblanc V, Parent S, et al. X-linked inhibitor of apoptosis protein (XIAP) regulates PTEN ubiquitination, content, and compartmentalization. Journal of Biological Chemistry, 2009, 284(31): 20462-20466.
doi: 10.1074/jbc.C109.009522 pmid: 19473982
[19]   Maddika S, Kavela S, Rani N, et al. WWP2 is an E3 ubiquitin ligase for PTEN. Nature Cell Biology, 2011, 13 (6): 728-733.
doi: 10.1038/ncb2240
[20]   Xu W T, Yang Z, Zhou S F, et al. Posttranslational regulation of phosphatase and tensin homolog (PTEN) and its functional impact on cancer behaviors. Drug Design, Development and Therapy, 2014, 8: 1745-1751.
[21]   Xie P, Peng Z, Chen Y, et al. Neddylation of PTEN regulates its nuclear import and promotes tumor development. Cell Research, 2021, 31 (3): 291-311.
doi: 10.1038/s41422-020-00443-z
[22]   Xirodimas D P. Novel substrates and functions for the ubiquitin-like molecule NEDD8. Biochemical Society Transactions, 2008, 36(5): 802-806.
doi: 10.1042/BST0360802
[23]   Pan Z Q, Kentsis A, Dias D C, et al. Nedd8 on cullin: building an expressway to protein destruction. Oncogene, 2004, 23 (11): 1985-1997.
doi: 10.1038/sj.onc.1207414
[24]   Huang D T, Ayrault O, Hunt H W, et al. E2-RING expansion of the NEDD 8 cascade confers specificity to cullin modification. Molecular Cell, 2009, 33(4): 483-495.
doi: 10.1016/j.molcel.2009.01.011
[25]   Xirodimas D P, Saville M K, Bourdon J C, et al. Mdm2-mediated NEDD 8 conjugation of p53 inhibits its transcriptional activity. Cell, 2004, 118(1): 83-97.
pmid: 15242646
[26]   Watson I R, Blanch A, Lin D C C, et al. Mdm2-mediated NEDD 8 modification of TAp73 regulates its transactivation function. Journal of Biological Chemistry, 2006, 281(45): 34096-34103.
doi: 10.1074/jbc.M603654200 pmid: 16980297
[27]   Stickle N H, Chung J, Klco J M, et al. pVHL modification by NEDD 8 is required for fibronectin matrix assembly and suppression of tumor development. Molecular and Cellular Biology, 2004, 24(8): 3251-3261.
doi: 10.1128/MCB.24.8.3251-3261.2004
[28]   Jiang Y N, Jia L J. Neddylation pathway as a novel anti-cancer target: mechanistic investigation and therapeutic implication. Anti-Cancer Agents in Medicinal Chemistry, 2015, 15(9): 1127-1133.
doi: 10.2174/1871520615666150305111257
[29]   Gai W B, Peng Z Q, Liu C H, et al. Advances in cancer treatment by targeting the neddylation pathway. Frontiers in Cell and Developmental Biology, 2021, 9: 653882.
doi: 10.3389/fcell.2021.653882
[30]   Zhou L S, Jiang Y Y, Luo Q, et al. Neddylation: a novel modulator of the tumor microenvironment. Molecular Cancer, 2019, 18(1): 77.
doi: 10.1186/s12943-019-0979-1
[31]   Soucy T A, Smith P G, Milhollen M A, et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature, 2009, 458 (7239): 732-736.
doi: 10.1038/nature07884
[32]   Sumi H, Inazuka M, Morimoto M, et al. An inhibitor of apoptosis protein antagonist T-3256336 potentiates the antitumor efficacy of the Nedd8-activating enzyme inhibitor pevonedistat (TAK-924/MLN4924). Biochemical and Biophysical Research Communications, 2016, 480(3): 380-386.
doi: 10.1016/j.bbrc.2016.10.058
[33]   Oladghaffari M, Shabestani Monfared A, Farajollahi A, et al. MLN4924 and 2DG combined treatment enhances the efficiency of radiotherapy in breast cancer cells. International Journal of Radiation Biology, 2017, 93(6): 590-599.
doi: 10.1080/09553002.2017.1294272 pmid: 28291374
[34]   Snaebjornsson M T, Janaki-Raman S, Schulze A. Greasing the wheels of the cancer machine: the role of lipid metabolism in cancer. Cell Metabolism, 2020, 31(1): 62-76.
doi: S1550-4131(19)30617-5 pmid: 31813823
[35]   Xie P, Zhang M, He S, et al. The covalent modifier Nedd 8 is critical for the activation of Smurf1 ubiquitin ligase in tumorigenesis. Nature Communications, 2014, 5: 3733.
doi: 10.1038/ncomms4733
[36]   Zhou L S, Zhang W J, Sun Y, et al. Protein neddylation and its alterations in human cancers for targeted therapy. Cellular Signalling, 2018, 44: 92-102.
doi: 10.1016/j.cellsig.2018.01.009
[37]   Wan J F, Zhu J, Li G C, et al. Radiosensitization of human colorectal cancer cells by MLN4924: an inhibitor of NEDD8-activating enzyme. Technology in Cancer Research & Treatment, 2016, 15(4): 527-534.
[38]   Currie E, Schulze A, Zechner R, et al. Cellular fatty acid metabolism and cancer. Cell Metabolism, 2013, 18(2): 153-161.
doi: 10.1016/j.cmet.2013.05.017 pmid: 23791484
[39]   Beyaz S, Mana M D, Roper J, et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature, 2016, 531 (7592): 53-58.
doi: 10.1038/nature17173
[40]   Zaytseva Y Y, Harris J W, Mitov M I, et al. Increased expression of fatty acid synthase provides a survival advantage to colorectal cancer cells via upregulation of cellular respiration. Oncotarget, 2015, 6(22): 18891-18904.
doi: 10.18632/oncotarget.3783
[41]   Wang H Y, Xi Q L, Wu G H. Fatty acid synthase regulates invasion and metastasis of colorectal cancer via Wnt signaling pathway. Cancer Medicine, 2016, 5(7): 1599-1606.
doi: 10.1002/cam4.711
[42]   Tu H L, Costa M. XIAP’s profile in human cancer. Biomolecules, 2020, 10(11): 1493.
doi: 10.3390/biom10111493
[1] DENG Jia-qiang, LI Wei-yao, ZHONG Li-jun, YU Shu-min. Research Progress on the Relationship Between Autophagy and Mesenchymal Stem Cell Senescence[J]. China Biotechnology, 2022, 42(3): 55-61.
[2] HU Kai,HU Jing,SUN Zi-jiu,LIU Shi-yan,LIAO De-yu,YU Huo-mei,ZHANG Yan. Effects of UPF1 on the Proliferation, Migration and Invasion of Breast Cancer Strains MDA-MB-231 and MCF-7[J]. China Biotechnology, 2022, 42(1/2): 58-71.
[3] LI Shi-rong,CHEN Yang-qin,ZHANG Chun-pan,QI Wen-jie. RS4651 Inhibits the EMT of Mouse Hepatocyte AML12 via Upregulating SMAD7[J]. China Biotechnology, 2021, 41(7): 1-9.
[4] OUYANG Qin,LI Yan-meng,XU An-jian,ZHOU Dong-hu,LI Zhen-kun,HUANG Jian. GTF2H2 Affects the Proliferation and Migration of Hep3B Hepatocellular Carcinoma Cells by Mediating AKT Signal Pathway[J]. China Biotechnology, 2021, 41(6): 4-12.
[5] TAO Shou-song,REN Guang-ming,YIN Rong-hua,YANG Xiao-ming,MA Wen-bing,GE Zhi-qiang. Knockdown of Deubiquitinase USP13 Inhibits the Proliferation of K562 Cells[J]. China Biotechnology, 2021, 41(5): 1-7.
[6] LU Yu-xiang,LI Yuan,FANG Dan-dan,WANG Xue-bo,YANG Wan-peng,CHU Yuan-kui,YANG Hua. The Role and Expression Regulation of MiR-5047 in the Proliferation and Migration of Breast Cancer Cells[J]. China Biotechnology, 2021, 41(4): 9-17.
[7] XU An-jian,LI Yan-meng,WU Shan-na,ZHANG Bei,YAO Jing-yi. PHP14 Plays a Role in Epithelial-Mesenchymal Transition of AML-12Cell Through Interaction with Vimentin[J]. China Biotechnology, 2021, 41(2/3): 1-6.
[8] TANG Min,WAN Qun,SUN Shi-lei,HU Jing,SUN Zi-jiu,FANG Yu-ting,ZHANG Yan. The Effects of Hsa-miR-5195-3p on the Proliferation, Migration and Invasion of Human Cervical Cancer SiHa Cells[J]. China Biotechnology, 2020, 40(4): 17-24.
[9] YANG Dan,TIAN Hai-shan,LI Xiao-kun. Research Progress of Fibroblast Growth Factor 5[J]. China Biotechnology, 2020, 40(3): 117-124.
[10] GU Hao,GUO Xin-yu,DU Jing-jing,ZHANG Pei-wen,WANG Ding-guo,LIAO Kun,ZHANG Shun-hua,ZHU Li. The Effect of miR-186-5p on the Proliferation and Differentiation of 3T3-L1 Preadipocyte[J]. China Biotechnology, 2020, 40(3): 21-30.
[11] HE Xiu-juan,HU Feng-zhi,LIU Qiu-li,LIU Yu-ping,ZHU Ling,ZHENG Wen-yun. CRISPR / Cas9 Gene Editing of QSOX1 in Breast Cancer Cells and Its Effect on the Proliferation and Invasion[J]. China Biotechnology, 2020, 40(11): 1-9.
[12] Ye LIU,Yue PAN,Wei ZHENG,Jing HU. miR-186-5p is Expressed Highly in Ethanol-induced Cardiomyocytes and Regulates Apoptosis by Target Gene XIAP[J]. China Biotechnology, 2019, 39(5): 53-62.
[13] Lu WANG,Li-yuan YANG,Yu-ting TANG,Yao TAO,Li LEI,Yi-pei JING,Xue-ke JIANG,Ling ZHANG. Effects of PKM2 Knockdown on Proliferation and Apoptosis of Human Leukemia Cells and Its Potential Mechanism[J]. China Biotechnology, 2019, 39(3): 13-20.
[14] DUAN Li-mei,YANG Jin-xiao,LIU Jia-yu,ZHENG Yong-bo,WU Xiao-hou,LUO Chun-li. shPLCε Inhibits Serine/Glycine Metabolism and Proliferation of Prostate Cancer via YAP Signaling Pathway[J]. China Biotechnology, 2019, 39(11): 1-12.
[15] Qun WAN,Meng-yao LIU,Jing XIA,Li-yao GOU,Min TANG,Shi-lei SUN,Yan ZHANG. The Effects of LncRNA SNHG3 on the Proliferation, Migration and Invasion of Human Breast Cancer MCF-7 Cells[J]. China Biotechnology, 2019, 39(1): 13-20.