Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (1): 13-20    DOI: 10.13523/j.cb.20190102
    
The Effects of LncRNA SNHG3 on the Proliferation, Migration and Invasion of Human Breast Cancer MCF-7 Cells
Qun WAN,Meng-yao LIU,Jing XIA,Li-yao GOU,Min TANG,Shi-lei SUN,Yan ZHANG()
Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education,Chongqing Medical University, Chongqing 400016, China
Download: HTML   PDF(1402KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective:To investigate the effects of LncRNA SNHG3 on the proliferation, migration and invasion of human breast cancer MCF-7 cells.Methods:The recombiant plasmid of SNHG3 was constucted. The experiment was divided into two group: control group (transfected with pcDNA-3.1+plasmid) and treatment group (transfected with pcDNA-3.1+/SNHG3 plasmid). The mRNA level of SNHG3 was detected by qRT-PCR; The mRNA and protein levels of MMP9, EMT-related makers were measured by qRT-PCR and Western blot; The colony formation assay was used to test the proliferation of MCF-7 cells; The wound- healing and Transwell chamber assay were taken to evaluate the migration and invasion of MCF-7 cells.Results:The expression of SNHG3 in MCF-7 cells was highly upregulated compared with control group(P<0.001); Furthermore, The mRNA and protein levels of MMP9 and EMT-related markers were increased; The migration and invasion abilities of SNHG3 overexpression group measured by wound healing assay and transwell chamber assay were augmented significantly. And the colony formation assay showed that proliferation of treatment group were increased remarkably.Conclusion:Overexpression of SNHG3 may promote the proliferation, migration and invasion of breast cancer MCF-7 cells by activating the EMT signaling pathway.



Key wordsBreast cancer      LncRNA      SNHG3      Proliferation      Migration      Invasion     
Received: 03 September 2018      Published: 28 February 2019
ZTFLH:  Q78  
Corresponding Authors: Yan ZHANG     E-mail: zy2753@hotmail.com
Cite this article:

Qun WAN,Meng-yao LIU,Jing XIA,Li-yao GOU,Min TANG,Shi-lei SUN,Yan ZHANG. The Effects of LncRNA SNHG3 on the Proliferation, Migration and Invasion of Human Breast Cancer MCF-7 Cells. China Biotechnology, 2019, 39(1): 13-20.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190102     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I1/13

Name Forward primer(5'→3') Reverse primer(5'→3')
SNHG3 CAAGCTTGATTCTCTAACTGCGCATGC GCGGATCCTTCAGAAAAAAATCACTTTA
SNHG3-1 GGCCACTTTTGTATGATTTCTAATGTATTTGTAATTTACC CAGCTAGGGATACAACCTCCCGTTGCTACCATCGATTTTT
SNHG3-2 TCGCTTCTTCTCCTTGGATTTG AGGCATGAAATGCACCTCAA
MMP9 CCCTTGTGCTCTTCCCTGGA TCTGCCACCCGAGTGTAACC
Snail TCCAGCAGCCCTACGACCAG AGGCCGAGGTGGACGAGAA
Vimentin TCTGGATTCACTCCCTCTGGTT ATCGTGATGCTGAGAAGTTTCGT
β-actin CCACGAAACTACCTTCAACTCC GTGATCTCCTTCTGCATCCTGT
Table 1 Primer sequence
Fig.1 Differential expression of SNHG3 in breast cancer and mammary tissue in Richardson breast 2 database P<0.01 (breast vs breast carcinoma)
Fig.2 SNHG3 overexpressed in breast cancer MCF-7 cells The expression of SNHG3 mRNA in MCF-7 cells was detected by qRT-PCR *** : P<0.001(pcDNA3.1+ vs. pcDNA3.1+/SNHG3)
Fig.3 SNHG3 promoted the proliferation of MCF-7 cells The MCF-7 cells proliferation were determined by colony forming test ** :P<0.01 (pcDNA3.1+ vs. pcDNA3.1+/SNHG3)
Fig.4 SNHG3 promoted the migration of MCF-7 cells (a),(b) The MCF-7 cells migration were determined by wound healing test and Transwell migration assay ** : P<0.01(pcDNA3.1+ vs. pcDNA3.1+/SNHG3); *** : P<0.001(pcDNA3.1+ vs. pcDNA3.1+/SNHG3)
Fig.5 SNHG3 promoted the invasion of MCF-7 cells The MCF-7 cells invasion were determined by Transwell invasion assay *** : P<0.001(pcDNA3.1+ vs. pcDNA3.1+/SNHG3)
Fig.6 SNHG3 activated the EMT signaling pathway of MCF-7 cells (a) The expression of MMP9 and EMT mRNA were detected by qRT-PCR (b) The expression of MMP9 and EMT protein were detected by Western blot * : P< 0.05(pcDNA3.1+ vs. pcDNA3.1+/SNHG3); ** : P< 0.01(pcDNA3.1+ vs. pcDNA3.1+/SNHG3)
[1]   Chan S, Friedrichs K, Noel D , et al. Prospective randomized trial of docetaxel versus doxorubicin in patients with metastatic breast cancer. Journal of Clinical Oncology, 1999,17(8):2341-2354.
doi: 10.1200/JCO.1999.17.8.2341
[2]   Lin C, Yang L . Long noncoding RNA in cancer: wiring signaling circuitry. Trends in Cell Biology, 2018,28(4):287-301.
doi: 10.1016/j.tcb.2017.11.008
[3]   Terracciano D, Terreri S, De F N , et al. The role of a new class of long noncoding RNAs transcribed from ultraconserved regions in cancer. Biochim Biophys Acta, 2017,1868(2):449.
doi: 10.1016/j.bbcan.2017.09.001 pmid: 28916343
[4]   Ballantyne M D, Pinel K, Dakin R , et al. Smooth muscle enriched long noncoding RNA (SMILR) regulates cell proliferation. Circulation, 2016,133(21):2050-2065.
doi: 10.1161/CIRCULATIONAHA.115.021019 pmid: 4872641
[5]   Sun T, Wong N . Transforming growth factor-β-induced long noncoding RNA promotes liver cancer metastasis via RNA-RNA crosstalk. Hepatology, 2015,61(2):722-724.
doi: 10.1002/hep.27599 pmid: 25380484
[6]   Ranzani V, Arrigoni A, Rossetti G , et al. Next-generation sequencing analysis of long noncoding RNAs in CD4 + T cell differentiation . Methods Mol Biol, 2017,1514:173-185.
doi: 10.1007/978-1-4939-6548-9
[7]   Padua D, Mahurkar-Joshi S, Law I K , et al. A long noncoding RNA signature for ulcerative colitis identifies IFNG-AS1 as an enhancer of inflammation. Am J Physiol Gastrointest Liver Physiol, 2016,311(3):G446-G457.
doi: 10.1152/ajpgi.00212.2016 pmid: 27492330
[8]   Jia P, Cai H, Liu X , et al. Long non-coding RNA H19 regulates glioma angiogenesis and the biological behavior of glioma-associated endothelial cells by inhibiting microRNA-29a. Cancer Lett, 2016,381(2):359-369.
doi: 10.1016/j.canlet.2016.08.009 pmid: 27543358
[9]   Yang F, Zhang H, Mei Y , et al. Reciprocal regulation of HIF-1α and lincRNA-p21 modulates the Warburg effect. Mol Cell, 2014,53(1):88-100.
doi: 10.1016/j.molcel.2013.11.004 pmid: 3222224316222
[10]   Zhang T, Cao C, Wu D , et al. SNHG3 correlates with malignant status and poor prognosis in hepatocellular carcinoma. Tumor Biology, 2016,37(2):2379-2385.
doi: 10.1007/s13277-015-4052-4 pmid: 26373735
[11]   Chan S, Friedrichs K, Noel D , et al. Prospective randomized trial of docetaxel versus doxorubicin in patients with metastatic breast cancer. Journal of Clinical Oncology, 1999,17(8):2341-2354
doi: 10.1200/JCO.1999.17.8.2341
[12]   Kawaji H, Severin J, Lizio M , et al. Update of the FANTOM web resource: from mammalian transcriptional landscape to its dynamic regulation. Nucleic Acids Research, 2009,10(4):R40.
doi: 10.1093/nar/gkq1112 pmid: 21075797
[13]   He H, Wei Z, Du F , et al. Transcription of HOTAIR is regulated by RhoC-MRTF-A-SRF signaling pathway in human breast cancer cells. Cellular Signalling, 2017,31:87-95.
doi: 10.1016/j.cellsig.2017.01.003 pmid: 28069441
[14]   Tang Y, Xiao G, Chen Y , et al. LncRNA MALAT1 promotes migration and invasion of non-small-cell lung cancer by targeting miR-206 and activating Akt/mTOR signaling. Anti-Cancer Drugs, 2018,29(8):725-735.
doi: 10.1097/CAD.0000000000000650
[15]   Wu W, Chen F, Cui X , et al. LncRNA NKILA suppresses TGF-β-induced epithelial-mesenchymal transition by blocking NF-κB signaling in breast cancer. International Journal of Cancer, 2018,143(9):2213-2224.
doi: 10.1002/ijc.v143.9
[16]   Cabibbo G, Craxì A . Epidemiology, risk factors and surveillance of hepatocellular carcinoma. European Review for Medical & Pharmacological Sciences, 2010,14(4):352.
doi: 10.1016/S0924-977X(10)70001-8 pmid: 20496547
[17]   Chen G G, Ho R L, Wong J , et al. Single nucleotide polymorphism in the promoter region of human alpha-fetoprotein (AFP) gene and its significance in hepatocellular carcinoma (HCC). Eur J Surg Oncol, 2007,33(7):882-886.
doi: 10.1016/j.ejso.2007.02.036 pmid: 17433605
[18]   Li N, Zhan X, Zhan X . The lncRNA SNHG3 regulates energy metabolism of ovarian cancer by an analysis of mitochondrial proteomes. Gynecologic Oncology, 2018,150(2):343-354.
doi: 10.1016/j.ygyno.2018.06.013 pmid: 29921511
[19]   Hou Z, Xu X, Fu X , et al. HBx-related long non-coding RNA MALAT1 promotes cell metastasis via up-regulating LTBP3 in hepatocellular carcinoma. American Journal of Cancer Research, 2017,7(4):845-856.
pmid: 28469957
[20]   Kotiyal S . Bhattacharya Breast cancer stem cells, EMT and therapeutic targets Biochem. Biophys. Res Commun, 2014,453(1):112-116.
[21]   May C D, Sphyris N, Evans K W , et al. Epithelial-mesenchymal transition and cancer stem cells: a dangerously dynamic duo in breast cancer progression. Breast Cancer Research, 2011,13(1):202.
doi: 10.1186/bcr2789 pmid: 3109556
[1] YANG Wan-bin,XU Yan,ZHUO Shi-xuan,WANG Xin-yi,LI Ya-jing,GUO Yi-fan,ZHANG Zheng-guang,GUO Yuan-yuan. Progress of Long Non-coding RNAs Related Epigenetic Modifications in Cancer[J]. China Biotechnology, 2021, 41(8): 59-66.
[2] LI Shi-rong,CHEN Yang-qin,ZHANG Chun-pan,QI Wen-jie. RS4651 Inhibits the EMT of Mouse Hepatocyte AML12 via Upregulating SMAD7[J]. China Biotechnology, 2021, 41(7): 1-9.
[3] OUYANG Qin,LI Yan-meng,XU An-jian,ZHOU Dong-hu,LI Zhen-kun,HUANG Jian. GTF2H2 Affects the Proliferation and Migration of Hep3B Hepatocellular Carcinoma Cells by Mediating AKT Signal Pathway[J]. China Biotechnology, 2021, 41(6): 4-12.
[4] TAO Shou-song,REN Guang-ming,YIN Rong-hua,YANG Xiao-ming,MA Wen-bing,GE Zhi-qiang. Knockdown of Deubiquitinase USP13 Inhibits the Proliferation of K562 Cells[J]. China Biotechnology, 2021, 41(5): 1-7.
[5] LU Yu-xiang,LI Yuan,FANG Dan-dan,WANG Xue-bo,YANG Wan-peng,CHU Yuan-kui,YANG Hua. The Role and Expression Regulation of MiR-5047 in the Proliferation and Migration of Breast Cancer Cells[J]. China Biotechnology, 2021, 41(4): 9-17.
[6] XU An-jian,LI Yan-meng,WU Shan-na,ZHANG Bei,YAO Jing-yi. PHP14 Plays a Role in Epithelial-Mesenchymal Transition of AML-12Cell Through Interaction with Vimentin[J]. China Biotechnology, 2021, 41(2/3): 1-6.
[7] LIU Tian-yi,FENG Hui,SALSABEEL Yousuf,XIE Ling-li,MIAO Xiang-yang. Research Progress of lncRNA in Animal Fat Deposition[J]. China Biotechnology, 2021, 41(11): 82-88.
[8] TANG Min,WAN Qun,SUN Shi-lei,HU Jing,SUN Zi-jiu,FANG Yu-ting,ZHANG Yan. The Effects of Hsa-miR-5195-3p on the Proliferation, Migration and Invasion of Human Cervical Cancer SiHa Cells[J]. China Biotechnology, 2020, 40(4): 17-24.
[9] YANG Dan,TIAN Hai-shan,LI Xiao-kun. Research Progress of Fibroblast Growth Factor 5[J]. China Biotechnology, 2020, 40(3): 117-124.
[10] GU Hao,GUO Xin-yu,DU Jing-jing,ZHANG Pei-wen,WANG Ding-guo,LIAO Kun,ZHANG Shun-hua,ZHU Li. The Effect of miR-186-5p on the Proliferation and Differentiation of 3T3-L1 Preadipocyte[J]. China Biotechnology, 2020, 40(3): 21-30.
[11] HE Xiu-juan,HU Feng-zhi,LIU Qiu-li,LIU Yu-ping,ZHU Ling,ZHENG Wen-yun. CRISPR / Cas9 Gene Editing of QSOX1 in Breast Cancer Cells and Its Effect on the Proliferation and Invasion[J]. China Biotechnology, 2020, 40(11): 1-9.
[12] Jie XIAN,Xue QIN,You-de CAO. Numb Inhibits the Ubiquitination Degradation of p53 by HDM2 in Triple-negative Breast Cancer[J]. China Biotechnology, 2019, 39(7): 1-7.
[13] Lu WANG,Li-yuan YANG,Yu-ting TANG,Yao TAO,Li LEI,Yi-pei JING,Xue-ke JIANG,Ling ZHANG. Effects of PKM2 Knockdown on Proliferation and Apoptosis of Human Leukemia Cells and Its Potential Mechanism[J]. China Biotechnology, 2019, 39(3): 13-20.
[14] SHEN Bing-lei,WANG Yu-xuan,HAN Shuo,LI Xi,YANG Zhuo-ni-na,ZOU Zi-wen,LIU Juan. Research Progress of Non-coding RNA in Autophagy[J]. China Biotechnology, 2019, 39(12): 56-63.
[15] DUAN Li-mei,YANG Jin-xiao,LIU Jia-yu,ZHENG Yong-bo,WU Xiao-hou,LUO Chun-li. shPLCε Inhibits Serine/Glycine Metabolism and Proliferation of Prostate Cancer via YAP Signaling Pathway[J]. China Biotechnology, 2019, 39(11): 1-12.