Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (11): 1-12    DOI: 10.13523/j.cb.20191101
    
shPLCε Inhibits Serine/Glycine Metabolism and Proliferation of Prostate Cancer via YAP Signaling Pathway
DUAN Li-mei1,YANG Jin-xiao1,LIU Jia-yu2,ZHENG Yong-bo2,WU Xiao-hou2,LUO Chun-li1,**()
1 Key Laboratory of Clinical Diagnostics Founded by Ministry of Education, College of Laboratory,Chongqing Medical University, Chongqing 400016, China
2 The First Affiliated Hospital of Chongqing, Medical University, Chongqing 400016, China
Download: HTML   PDF(2275KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To investigate the effects of phospholipase C epsilon on serine/glycine metabolism and cell proliferation in prostate cancer cells.Methods: Lentivirus and plasmid were transfected into LNCAP and PC3 cells. The expression of YAP, serine/glycine producing enzyme (PSAT1,PSPH,SHMT2) and proliferation-related genes (Cyclin D1,PCNA) were detected by q-PCR and Western blot. The cloning formation experiment and MTT assays were used to detect the clone formation rate and cell proliferation activity.Results: (1) Infection with LV-shPLCε significantly down-regulated the mRNA and protein levels of PLCε,YAP,serine/glycine producing enzymes (PSAT1,PSPH,SHMT2) and proliferation genes (Cyclin D1,PCNA) in prostate cancer cells LNCAP and PC3. At the same time, it inhibits the clone formation ability and proliferative activity of LNCAP and PC3 cells. (2) After adding over-expressing YAP plasmid to shPLCε group, YAP,serine/glycine producing enzymes and proliferation genes were significantly reversed. but the results of the interference with the down YAP plasmid were reversed.Conclusion: shPLCε inhibits the serine/glycine metabolism and proliferation in prostate cancer cells by down-regulating the expression of YAP.



Key wordsProstate cancer      PLCε      YAP      Serine/Glycine metabolism      Proliferation     
Received: 15 April 2019      Published: 17 December 2019
ZTFLH:  Q814  
Corresponding Authors: Chun-li LUO     E-mail: luochunli79@126.com
Cite this article:

DUAN Li-mei,YANG Jin-xiao,LIU Jia-yu,ZHENG Yong-bo,WU Xiao-hou,LUO Chun-li. shPLCε Inhibits Serine/Glycine Metabolism and Proliferation of Prostate Cancer via YAP Signaling Pathway. China Biotechnology, 2019, 39(11): 1-12.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20191101     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I11/1

病毒名称 病毒序列(5'→3')
LV-shPLCε Sense: GGTTCTCTCCTAGAAGCAACC
Anti-sense: CCAAGAGAGGATCTTCGTTGG
LV-shNC Sense: TTCTCCGAACGTGTCACGT
Anti-sense: AAGAGGCTTGCACAGTGCA
Table 1 lentivirus sequence
基因 上游引物(5'→3') 下游引物(5'→3')
PLCε GGAGAATCCTCGGTAG GGTTGTCAGCGTATGTCC
YAP TAGCCCTGCGTAGCCAGTTA TCATGCTTAGTCCACTGTCTGT
PSAT1 TGCCGCACTCAGTGTTGTTAG GCAATTCCCGCACAAGATTCT
PSPH GAGGACGCGGTGTCAGAAAT GGTTGCTCTGCTATGAGTCTCT
SHMT2 CCCTTCTGCAACCTCACGAC TGAGCTTATAGGGCATAGACTCG
Cyclin D1 GCTGGAGCCCGTGAAAAAGA CTCCGCCTCTGGCATTTTG
PCNA TCAAGAAGGTGTTGGAGGCA CAGCGGTAGGTGTCGAAGC
β-actin GGGACCTGACTGACTACCTC ACGAGACCACCTTCAACTCCAC
Table 2 The sequence of primer for q-PCR
质粒名称 质粒序列(5'→3')
pcDNA Flag Yap1 Sense:GACGGATCGGGAGATCTCCCGATCCCCTATGGTCGACTCTCAGTACAATCTGCTCTGATG
Antisense:CTGCCTAGCCCTCTAGAGGGCTAGGGGATACCAGCTGAGAGTCATGTTAGACGAGACTAC
pcDNA3.2/EV Sense:GACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCC
Antisense:CTGTAACTAATAACTGATCAATAATTATCATTAGTTAATGCCCCAGTAATCAAGTATCGG
pGPU6/GFP/Neo-YAP1 Sense: CACCGCCACCAAGCTAGATAAAGAATTCAAGAGATTCTTTATCTAGCTTGGTGGCTTTTTTG
Antisense:GATCCAAAAAAGCCACCAAGCTAGATAAAGAATCTCTTGAATTCTTTATCTAGCTTGGTGGC
pGPU6/GFP/Neo-shNC Sense:CACCGTTCTCCGAACGTGTCACGTTTCAAGAGAACGTGACACGTTCGGAGAATTTTTTG
Antisense:GATCCAAAAAATTCTCCGAACGTGTCACGTTCTCTTGAAACGTGACACGTTCGGAGAAC
Table 3 Plasmid vector sequence
Fig.1 PLCε mRNA and protein levels in LNCAP and PC3 cells infected with LV-shPLCε (a)mRNA level of PLCε in LNCAP infected with shPLCε by q-PCR (b)mRNA level of PLCε in PC3 infected with shPLCε by q-PCR (c)Western blot of PLCεin LNCAP and PC3 (d)Relative protein expression of PLCεin LNCAP and PC3 * P<0.05, ** P<0.01, *** P<0.001 vs shNC group
Fig.2 Clone formation experiments of LNCAP and PC3
Fig.3 MTT experiments of LNCAP and PC3 after 72 hours (a)MTT of LNCAP (b)MTT of PC3 * P<0.05, ** P<0.01, *** P<0.001
Fig.4 PLCε,YAP,PSAT1,PSPH,SHMT2,Cyclin D1,PCNA mRNA levels in LNCAP and PC3 cells infected with shPLCε (a) mRNA levels of LNCAP infected with shPLCε (b) mRNA levels of PC3 infected with shPLCε * P<0.05, ** P<0.01, *** P<0.001
Fig.5 YAP,PSAT1,PSPH,SHMT2,Cyclin D1,PCNA protein levels in LNCAP and PC3 cells infected with shPLCε (a) Western blot of LNCAP infected with shPLCε (b)Relative protein level of LNCAP (c)Western blot of PC3 infected with shPLCε (d)Relative protein level of PC3 *P<0.05, ** P<0.01, *** P<0.001
 
Fig.7 PLCε,YAP,PSAT1,PSPH,SHMT2,Cyclin D1,PCNA mRNA levels in LNCAP and PC3 cells infected with over-expression or knockdown of YAP plasmid (a)mRNA level of LNCAP infected with plasmids (b) mRNA level of PC3 infected with plasmids * P<0.05, ** P<0.01, *** P<0.001
Fig.8 PLCε,YAP,PSAT1,PSPH,SHMT2,Cyclin D1,PCNA protein levels in LNCAP and PC3 cells infected with over-expression or knockdown of YAP plasmid (a)Western blot of PLCε,YAP,PSAT1,PSPH,SHMT2,Cyclin D1,PCNA in LNCAP (b)Relative protein level of LNCAP (c)Western blot of PLCε,YAP,PSAT1,PSPH,SHMT2,Cyclin D1,PCNA in PC3 (d)Relative protein level of PC3 * P<0.05, ** P<0.01, *** P<0.001
[1]   Torre L A, Bray F, Siegel R L , et al. Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 2015,65(2):87-108.
doi: 10.3322/caac.21262 pmid: 25651787
[2]   叶定伟 . 前列腺癌的流行病学和中国的发病趋势. 中华外科杂志, 2006,6:362-364
[2]   Ye D W . Epidemiology of prostate cancer and the incidence of disease in China. Chinese Journal of Surgery, 2006,6:362-364.
[3]   余朝文 . 基于质谱技术的临床重要疾病代谢相关标志物的鉴定及应用研究. 重庆:重庆医科大学, 2018.
[3]   Yu C W . Identification and application of metabolic related markers in clinically important diseases based on mass spectrometry. Chongqing:Chongqing Medical University, 2018.
[4]   Dereziński P, Klupczynska A, Sawicki W , et al. Amino acid profiles of serum and urine in search for prostate cancer biomarkers: a pilot study. International Journal of Medical Sciences, 2017,14(1):1-12.
doi: 10.7150/ijms.15783 pmid: 28138303
[5]   Locasale J W . Serine glycine and one-carbon units: cancer metabolism in full circle.Nature Reviews. Cancer, 2013,13(8):572-583.
doi: 10.1038/nrc3557 pmid: 23822983
[6]   Ada-Nguema A S, Xenias H, Hofman J M , et al. The small GTPase R-ras regulates organization of actin and drives membrane protrusions through the activity of PLCepsilon. Journal of Cell Science, 2006,119(Pt 7):1307-1319.
doi: 10.1242/jcs.02835 pmid: 16537651
[7]   Song C, Hu C D, Masago M , et al. Regulation of a novel human phospholipase C, PLCepsilon, through membrane targeting by ras. The Journal of Biological Chemistry, 2001,276(4):2752-2757.
doi: 10.1074/jbc.M008324200 pmid: 11022048
[8]   Wang X, Fan Y, Du Z , et al. Knockdown of phospholipase Cε(PLCε)inhibits cell proliferation via phosphatase and tensin homolog deleted on chromosome 10 (PTEN)/AKT signaling pathway in human prostate cancer. Medical Science Monitor, 2018,24:254-263.
doi: 10.12659/msm.908109 pmid: 29330357
[9]   王晓亮, 彭志海 . 磷酯酶C家族新成员——磷酯酶CE1. 医学分子生物学杂志, 2008,4:332-335.
[9]   Wang X L, Peng Z H . A new member of the phospholipase C family——phospholipase CE1. Journal of Medical Molecular Biology, 2008,4:332-335.
[10]   Abnet C C, Freedman N D, Hu N , et al. A shared susceptibility locus in PLCE1 at 10q23 for gastric adenocarcinoma and esophageal squamous cell carcinoma. Nature Genetics, 2010,42(9):764-767.
doi: 10.1038/ng.649 pmid: 20729852
[11]   Smrcka A V, Brown J H . Role of phospholipase Cε in physiological phosphoinositide signaling networks. Cellular Signalling, 2012,24(6):1333-1343.
doi: 10.1016/j.cellsig.2012.01.009
[12]   Yang X, Ou L, Tang M , et al. Knockdown of PLCε inhibits inflammatory cytokine release via STAT3 phosphorylation in human bladder cancer cells. Tumour Biology, 2015,36(12):9723-9732.
doi: 10.1007/s13277-015-3712-8 pmid: 26156799
[13]   郝燕妮, 李婷, 范佳鑫 , 等. shPLCε通过下调CDC25A抑制T24细胞的瓦伯格效应. 中国生物工程杂志, 2018,38(5):33-39.
[13]   Hao Y N, Li T, Fan J X , et al. The inhibition of the WBS effect of T24 cells by down-regulating CDC25A by shPLCε. China Biotechnology, 2018,38(5):33-39.
[14]   Amelio I, Cutruzzolá F, Antonov A , et al. Serine and glycine metabolism in cancer. Trends in Biochemical Sciences, 2014,39(4):191-198.
doi: 10.1016/j.tibs.2014.02.004
[15]   Mattaini K R, Sullivan M R . The importance of serine metabolism in cancer. The Journal of Cell Biology, 2016,214(3):249-257.
doi: 10.1083/jcb.201604085 pmid: 27458133
[16]   Maddocks O D K, Athineos D, Cheung E C , et al. Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature, 2017,544(7650):372-376.
doi: 10.1038/nature22056 pmid: 28425994
[17]   Maddocks O D, Berkers C R, Mason S M , et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature, 2013,493(7433):542-546.
doi: 10.1038/nature11743
[18]   Gao X, Locasale J W . Serine and methionine metabolism: vulnerabilities in lethal prostate cancer. Cancer Cell, 2019,35(3):339-341.
doi: 10.1016/j.ccell.2019.02.014 pmid: 30889375
[19]   Reina-Campos M, Linares J F, Duran A , et al. Increased serine and one-carbon pathway metabolism by PKCλ/ι deficiency promotes neuroendocrine prostate cancer. Cancer Cell, 2019,35(3):385-400.
doi: 10.1016/j.ccell.2019.01.018 pmid: 30827887
[20]   Piccolo S, Dupont S . The biology of YAP/TAZ: hippo signaling and beyond. Physiological Reviews, 2014,94(4):1287-1312.
doi: 10.1152/physrev.00005.2014
[21]   Mesrouze Y, Bokhovchuk F, Meyerhofer M, et al. Dissection of the interaction between the intrinsically disordered YAP protein and the transcription factor TEAD. eLife, 2017, 6. . 25068.
doi: 10.7554/eLife.25068 pmid: 28430104
[22]   Zhang X, Sun F, Qiao Y , et al. TFCP2 is required for YAP-dependent transcription to stimulate liver malignancy. Cell Reports, 2017,21(5):1227-1239.
doi: 10.1016/j.celrep.2017.10.017 pmid: 29091762
[23]   Ou C, Sun Z, Li S , et al. Dual roles of yes-associated protein (YAP) in colorectal cancer. Oncotarget, 2017,8(43):75727-75741.
doi: 10.18632/oncotarget.20155 pmid: 29088905
[24]   Maugeri-Saccà M, Barba M, Pizzuti L , et al. The hippo transducers TAZ and YAP in breast cancer: oncogenic activities and clinical implications. Expert Reviews in Molecular Medicine, 2015,17:e14.
doi: 10.1017/erm.2015.12 pmid: 26136233
[25]   Cao L, Sun P L, Yao M , et al. Expression of YES-associated protein (YAP) and its clinical significance in breast cancer tissues. Human Pathology, 2017,68:166-174.
doi: 10.1016/j.humpath.2017.08.032 pmid: 28899737
[26]   Zhang L, Yang S, Chen X , et al. The hippo pathway effector YAP regulates motility, invasion, and castration-resistant growth of prostate cancer cells. Molecular and Cellular Biology, 2015,35(8):1350-1362.
doi: 10.1128/MCB.00102-15 pmid: 25645929
[27]   Chen H, Chen Q . Expression of netrin-1 by hypoxia contributes to the invasion and migration of prostate carcinoma cells by regulating YAP activity. Experimental Cell Research, 2016,349(2):302-309.
doi: 10.1016/j.yexcr.2016.10.023 pmid: 27815019
[28]   Seo W I, Park S, Gwak J , et al. Wnt signaling promotes androgen-independent prostate cancer cell proliferation through up-regulation of the hippo pathway effector YAP. Biochemical and Biophysical Research Communications, 2017,486(4):1034-1039.
doi: 10.1016/j.bbrc.2017.03.158 pmid: 28366633
[29]   Hu Y, Shin D J, Pan H , et al. YAP suppresses gluconeogenic gene expression through PGC1α. Hepatology, 2017,66(6):2029-2041.
doi: 10.1002/hep.29373 pmid: 28714135
[30]   Yang C S, Stampouloglou E, Kingston N M, et al.Glutamine-utilizing transaminases are a metabolic vulnerability of TAZ/YAP-activated cancer cells.EMBO Reports, 2018, 19(6). [2019-02-25]. . 201643577.
doi: 10.15252/embr.201643577 pmid: 29661856
[31]   Zhou X, Wang S, Wang Z , et al. Estrogen regulates hippo signaling via GPER in breast cancer. The Journal of Clinical Investigation, 2015,125(5):2123-2135.
doi: 10.1172/JCI79573 pmid: 25893606
[32]   Deng Q, Jiang G, Wu Y , et al. GPER/Hippo-YAP signal is involved in bisphenol S induced migration of triple negative breast cancer (TNBC) cells. Journal of Hazardous Materials, 2018,355:1-9.
doi: 10.1016/j.jhazmat.2018.05.013 pmid: 29758456
[1] LI Shi-rong,CHEN Yang-qin,ZHANG Chun-pan,QI Wen-jie. RS4651 Inhibits the EMT of Mouse Hepatocyte AML12 via Upregulating SMAD7[J]. China Biotechnology, 2021, 41(7): 1-9.
[2] OUYANG Qin,LI Yan-meng,XU An-jian,ZHOU Dong-hu,LI Zhen-kun,HUANG Jian. GTF2H2 Affects the Proliferation and Migration of Hep3B Hepatocellular Carcinoma Cells by Mediating AKT Signal Pathway[J]. China Biotechnology, 2021, 41(6): 4-12.
[3] TAO Shou-song,REN Guang-ming,YIN Rong-hua,YANG Xiao-ming,MA Wen-bing,GE Zhi-qiang. Knockdown of Deubiquitinase USP13 Inhibits the Proliferation of K562 Cells[J]. China Biotechnology, 2021, 41(5): 1-7.
[4] LU Yu-xiang,LI Yuan,FANG Dan-dan,WANG Xue-bo,YANG Wan-peng,CHU Yuan-kui,YANG Hua. The Role and Expression Regulation of MiR-5047 in the Proliferation and Migration of Breast Cancer Cells[J]. China Biotechnology, 2021, 41(4): 9-17.
[5] TANG Min,WAN Qun,SUN Shi-lei,HU Jing,SUN Zi-jiu,FANG Yu-ting,ZHANG Yan. The Effects of Hsa-miR-5195-3p on the Proliferation, Migration and Invasion of Human Cervical Cancer SiHa Cells[J]. China Biotechnology, 2020, 40(4): 17-24.
[6] YANG Dan,TIAN Hai-shan,LI Xiao-kun. Research Progress of Fibroblast Growth Factor 5[J]. China Biotechnology, 2020, 40(3): 117-124.
[7] GU Hao,GUO Xin-yu,DU Jing-jing,ZHANG Pei-wen,WANG Ding-guo,LIAO Kun,ZHANG Shun-hua,ZHU Li. The Effect of miR-186-5p on the Proliferation and Differentiation of 3T3-L1 Preadipocyte[J]. China Biotechnology, 2020, 40(3): 21-30.
[8] HE Xiu-juan,HU Feng-zhi,LIU Qiu-li,LIU Yu-ping,ZHU Ling,ZHENG Wen-yun. CRISPR / Cas9 Gene Editing of QSOX1 in Breast Cancer Cells and Its Effect on the Proliferation and Invasion[J]. China Biotechnology, 2020, 40(11): 1-9.
[9] Lu WANG,Li-yuan YANG,Yu-ting TANG,Yao TAO,Li LEI,Yi-pei JING,Xue-ke JIANG,Ling ZHANG. Effects of PKM2 Knockdown on Proliferation and Apoptosis of Human Leukemia Cells and Its Potential Mechanism[J]. China Biotechnology, 2019, 39(3): 13-20.
[10] Qun WAN,Meng-yao LIU,Jing XIA,Li-yao GOU,Min TANG,Shi-lei SUN,Yan ZHANG. The Effects of LncRNA SNHG3 on the Proliferation, Migration and Invasion of Human Breast Cancer MCF-7 Cells[J]. China Biotechnology, 2019, 39(1): 13-20.
[11] Li-yao GOU,Meng-yao LIU,Jing XIA,Qun WAN,Chi-lei SUN,Min TANG,Yan ZHANG. The Effects of Bone Morphogenetic Protein 9(BMP9) on the Proliferation and Migration of Human Bladder Cancer BIU-87 Cells[J]. China Biotechnology, 2018, 38(5): 10-16.
[12] Yan-ni HAO,Ting LI,Jia-xin FAN,Luo LI,Ling-fang NIU,Li-ping OU,Xiao-hou WU,Chun-li LUO. Effects of shPLCε on Warburg Effect Through CDC25A in T24 Cells[J]. China Biotechnology, 2018, 38(5): 33-39.
[13] Yi-man LI,Qin ZHOU. The Effects of Herpud1 on Metanephric Mesenchymal Cells and Its Mechanism[J]. China Biotechnology, 2018, 38(3): 9-15.
[14] Qiong YANG,Ling-hui WANG,Hao GU,Jing-jing DU,Jin-yuan LIU,Shun-hua ZHANG,Li ZHU. The Effect of miR-196a-5p on Proliferation and Differentiation of 3T3-L1 Preadipocyte[J]. China Biotechnology, 2018, 38(11): 9-17.
[15] FENG Yuan, TANG Yun, XU Lei, TAN Hai-gang. Algal Polysaccharides Inhibits Proliferation and Migration of Liver Cancer Cell Hep3B Via Down-regulation of EMP Pathway[J]. China Biotechnology, 2017, 37(9): 31-40.