Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (3): 99-109    DOI: 10.13523/j.cb.2109020
    
Research Progress on Microbial Synthesis of Heme Using 5-Aminolevulinic Acid as the Sole Precursor
LIU Jia-meng1,LI Xue-ying1,LIU Ye-xue1,WANG Wen-hang2,LI Qing-gang1,LU Fu-ping1,LI Yu1,**()
1 Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
2 College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
Download: HTML   PDF(3629KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

With the rise of the artificial meat craze, heme, which is the coloring substance of artificial meat, has increasingly attracted the interest of researchers. As a porphyrin compound containing iron, it takes 5-aminolevulinic acid as the only precursor, and is synthesized in organisms through three pathways, namely, coproporphyrin-dependent, protoporphyrin-dependent, and siroheme-dependent, which is considered to be an ideal iron supplement and colorant. Compared with chemical synthesis and biological extraction, microbial synthesis is the promising method to make mass product of heme due to its convenient operation, environmental-friendly and so on. This article introduces the synthetic pathway of heme in detail, and summarizes the latest progress in the production of heme using 5-aminolevulinic acid as the sole precursor by microorganisms. In addition, the challenges and prospects of synthetic microorganisms were briefly analyzed.



Key wordsMicroorganism      5-aminolevulinic acid      Heme      Synthetic pathway     
Received: 08 September 2021      Published: 07 April 2022
ZTFLH:  Q812  
Corresponding Authors: Yu LI     E-mail: liyu@tust.edu.cn
Cite this article:

LIU Jia-meng,LI Xue-ying,LIU Ye-xue,WANG Wen-hang,LI Qing-gang,LU Fu-ping,LI Yu. Research Progress on Microbial Synthesis of Heme Using 5-Aminolevulinic Acid as the Sole Precursor. China Biotechnology, 2022, 42(3): 99-109.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2109020     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I3/99

Fig.1 The structure of heme
Fig.2 The heme pathway of microorganism
Fig.3 Synthetic pathway of 5-aminolevulinic acid in microorganisms Red arrow: C4 pathway synthesizes 5-aminolevulinic acid; blue arrow: C5 pathway synthesizes 5-aminolevulinic acid;red font: overexpressed gene; green font:knocked out gene
Strains Key genes and sources Main substrates Pathway Titer/
(g·L-1)
References
C. glutamicum hemA(R. palustris) Cassava bagasse
hydrolysate, glycine
C4 18.50 [22]
E. coli hemA(R. capsulatus) Glucose C4 2.81 [23]
C. glutamicum hemA(R. capsulatus) Glucose, glycine C4 14.70 [24]
C. glutamicum hemA(R. sphaeroides) Glucose, glycine C4 3.40 [25]
C. glutamicum hemA(R. sphaeroides) Glucose, glycine C4 7.53 [31]
E. coli hemA(R. sphaeroides) Glycerol C4 6.93 [32]
E. coli hemA(R. palustris) Glucose, succinate, glycine C4 11.50 [34]
C. glutamicum hemA(S. arizona), hemL(E. coli) Glucose C5 3.16 [41]
E. coli hemA1 and pgr7(A. thaliana), hemL(E. coli) Glucose, Glutamate C5 7.64 [39]
E. coli hemA(S. typhimurium), hemL(E. coli) Glucose C5 3.40 [42]
E. coli hemA(S. arizona), hemL(E. coli) Glucose C5 4.05 [43]
C. glutamicum hemA(S.typhimurium), hemL(E. coli) Glucose C5 2.90 [46]
E. coli hemA(S. arizona), hemL(E. coli) Glucose C5 5.25 [47]
Table 1 Summary of the synthesis of ALA in the past five years
Fig.4 Synthetic pathway of 5-aminolevulinic acid to heme in microorganisms Blue arrow: PPD pathway synthesizes heme, presenting in eukaryotes and gram-negative bacteria;green arrow: CPD pathway synthesizes heme, presenting in eukaryotes and gram-positive bacteria;orange arrow: SHD pathway synthesizes heme, presenting in archaea and sulfate-reducing bacteria;red font: overexpressed gene; green font: knocked-out gene
Strains and optimization strategies Heme titer References
E. coli
Overpressed hemA,maeB and dctA 6.4 mg/L [48]
Overpressed coaA,hemA,maeB and dctA 0.49 μmol/g DCW [49]
Overpressed seven genes of hemA,hemB,hemC,hemD,hemE,hemF,hemY and hemH firstly (3.3 ± 0.3) μmol/L [51]
Overpressed hemAM,hemB,hemC,hemD,hemE,hemF,hemG and hemH modularly 0.954 μmol/(L·OD) [52]
Overpressed hemAM,hemB,hemC,hemD,hemE,hemF,hemG and hemH modularly,knocked out pta,ldhA and yfex,overpresseed ccmABC (115.5 ± 2.3) mg/L [60]
Overpressed hemA and coaA 9.1 μmol/g [61]
C. glutamicum
Overpressed hemAM,hemL and dtxR - [56]
Overpressed hemAM,hemL,hemY,hemH and hemQ (27.22 ± 0.65) mg/L [62]
Table 2 Summary of optimization of heme synthesis pathway
[1]   Layer G. Heme biosynthesis in prokaryotes. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2021, 1868(1):118861.
doi: 10.1016/j.bbamcr.2020.118861
[2]   陈丹园. 大肠杆菌血红素合成途径关键酶基因的表达与调控. 无锡: 江南大学, 2018.
[2]   Chen D Y. Expression and regulation of genes coding for the key enzyme in heme synthstic pathway in E. coli. Wuxi: Jiangnan University, 2018.
[3]   汪学荣, 王飞. 生物态补铁剂-血红素铁的研究进展. 中国食品添加剂, 2007(3):82-87.
[3]   Wang X R, Wang F. Biology iron supplement-heme iron and its progress. China Food Additives, 2007(3):82-87.
[4]   Skolmowska D, Głᶏbska D. Analysis of heme and non-heme iron intake and iron dietary sources in adolescent menstruating females in a national polish sample. Nutrients, 2019, 11(5):1049.
doi: 10.3390/nu11051049
[5]   Hoppe M, Brün B, Larsson M P, et al. Heme iron-based dietary intervention for improvement of iron status in young women. Nutrition, 2013, 29(1):89-95.
doi: 10.1016/j.nut.2012.04.013
[6]   曹稳根, 李卫华. 亚硝基血红色素食品着色剂的研究. 信阳师范学院学报(自然科学版), 1996, 9(1):75-78.
[6]   Cao W G, Li W H. Study on the nitroso blood red pigmet colouring agent for food. Journal of Xinyang Teachers College (Natural Science Edition), 1996, 9(1):75-78.
[7]   Jin Y, He X Y, Andoh-Kumi K, et al. Evaluating potential risks of food allergy and toxicity of soy leghemoglobin expressed in Pichia pastoris. Molecular Nutrition & Food Research, 2018, 62(1):1700297.
[8]   Fraser R Z, Shitut M, Agrawal P, et al. Safety evaluation of soy leghemoglobin protein preparation derived from Pichia pastoris, intended for use as a flavor catalyst in plant-based meat. International Journal of Toxicology, 2018, 37(3):241-262.
doi: 10.1177/1091581818766318
[9]   Zhao X R, Zhou J W, Du G C, et al. Recent advances in the microbial synthesis of hemoglobin. Trends in Biotechnology, 2021, 39(3):286-297.
doi: 10.1016/j.tibtech.2020.08.004
[10]   Anderson K E, Collins S D. 192 Hemin treatment for acute porphyria: implications for clinical practice of an open-label study of 130 patients. Journal of Investigative Medicine, 2006, 54(1):S290.
[11]   卫乐红, 时亚文, 陈石良, 等. 血红素铁的制备及应用研究进展. 食品与药品, 2013, 15(5):357-360.
[11]   Wei L H, Shi Y W, Chen S L, et al. Progress on preparation and application of heme iron. Food and Drug, 2013, 15(5):357-360.
[12]   朱媛媛, 庄红, 张婷, 等. 血红素铁研究进展. 肉类研究, 2010, 24(5):18-23.
[12]   Zhu Y Y, Zhuang H, Zhang T, et al. Study process on heme iron. Meat Research, 2010, 24(5):18-23.
[13]   Carlsson M L R, Kanagarajan S, Bülow L, et al. Plant based production of myoglobin - a novel source of the muscle heme-protein. Scientific Reports, 2020, 10(1):920.
doi: 10.1038/s41598-020-57565-y pmid: 31969582
[14]   Zhou W J, Cen J W, Hu Q R, et al. Study on extractiing of heme from tilapias blood by enzymatic method. Advanced Materials Research, 2014,941- 944:2641-2645.
[15]   Panek H, O’Brian M R. A whole genome view of prokaryotic haem biosynthesis. Microbiology (Reading, England), 2002, 148(Pt 8):2273-2282.
doi: 10.1099/00221287-148-8-2273
[16]   Kang Z, Ding W W, Gong X, et al. Recent advances in production of 5-aminolevulinic acid using biological strategies. World Journal of Microbiology and Biotechnology, 2017, 33(11):200.
doi: 10.1007/s11274-017-2366-7
[17]   Choi H P, Lee Y M, Yun C W, et al. Extracellular 5-aminolevulinic acid production by Escherichia coli containing the Rhodopseudomonas palustris KUGB306 hemA gene. Journal of Microbiology and Biotechnology, 2008, 18(6):1136-1140.
[18]   Zhang L L, Chen J Z, Chen N, et al. Cloning of two 5-aminolevulinic acid synthase isozymes HemA and HemO from Rhodopseudomonas palustris with favorable characteristics for 5-aminolevulinic acid production. Biotechnology Letters, 2013, 35(5):763-768.
doi: 10.1007/s10529-013-1143-4 pmid: 23338702
[19]   Lin J P, Fu W Q, Cen P L. Characterization of 5-aminolevulinate synthase from Agrobacterium radiobacter, screening new inhibitors for 5-aminolevulinate dehydratase from Escherichia coli and their potential use for high 5-aminolevulinate production. Bioresource Technology, 2009, 100(7):2293-2297.
doi: 10.1016/j.biortech.2008.11.008
[20]   Lou J W, Zhu L, Wu M B, et al. High-level soluble expression of the hemA gene from Rhodobacter capsulatus and comparative study of its enzymatic properties. Journal of Zhejiang University-Science B, 2014, 15(5):491-499.
doi: 10.1631/jzus.B1300283
[21]   Fu W Q, Lin J P, Cen P L. Enhancement of 5-aminolevulinate production with recombinant Escherichia coli using batch and fed-batch culture system. Bioresource Technology, 2008, 99(11):4864-4870.
doi: 10.1016/j.biortech.2007.09.039
[22]   Chen J Z, Wang Y, Guo X, et al. Efficient bioproduction of 5-aminolevulinic acid, a promising biostimulant and nutrient, from renewable bioresources by engineered Corynebacterium glutamicum. Biotechnology for Biofuels, 2020, 13:41.
doi: 10.1186/s13068-020-01685-0
[23]   Ding W W, Weng H J, Du G C, et al. 5-Aminolevulinic acid production from inexpensive glucose by engineering the C4 pathway in Escherichia coli. Journal of Industrial Microbiology & Biotechnology, 2017, 44(8):1127-1135.
[24]   Yang P, Liu W J, Cheng X L, et al. A new strategy for production of 5-aminolevulinic acid in recombinant Corynebacterium glutamicum with high yield. Applied and Environmental Microbiology, 2016, 82(9):2709-2717.
doi: 10.1128/AEM.00224-16
[25]   Zou Y L, Chen T, Feng L L, et al. Enhancement of 5-aminolevulinic acid production by metabolic engineering of the glycine biosynthesis pathway in Corynebacterium glutamicum. Biotechnology Letters, 2017, 39(9):1369-1374.
doi: 10.1007/s10529-017-2362-x
[26]   Li T, Guo Y Y, Qiao G Q, et al. Microbial synthesis of 5-aminolevulinic acid and its coproduction with polyhydroxybutyrate. ACS Synthetic Biology, 2016, 5(11):1264-1274.
doi: 10.1021/acssynbio.6b00105
[27]   Meng Q L, Zhang Y F, Ma C L, et al. Purification and functional characterization of thermostable 5-aminolevulinic acid synthases. Biotechnology Letters, 2015, 37(11):2247-2253.
doi: 10.1007/s10529-015-1903-4
[28]   Meng Q L, Zhang Y F, Ju X Z, et al. Production of 5-aminolevulinic acid by cell free multi-enzyme catalysis. Journal of Biotechnology, 2016, 226:8-13.
doi: 10.1016/j.jbiotec.2016.03.024
[29]   van der Werf M J, Zeikus J G. 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene. Applied and Environmental Microbiology, 1996, 62(10):3560-3566.
doi: 10.1128/aem.62.10.3560-3566.1996 pmid: 8837411
[30]   Shin J A, Kwon Y D, Kwon O H, et al. 5-Aminolevulinic acid biosynthesis in Escherichia coli coexpressing NADP-dependent malic enzyme and 5-aminolevulinate synthase. Journal of Microbiology and Biotechnology, 2007, 17(9):1579-1584.
[31]   Feng L L, Zhang Y, Fu J, et al. Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid. Biotechnology and Bioengineering, 2016, 113(6):1284-1293.
doi: 10.1002/bit.25886
[32]   Miscevic D, Mao J Y, Kefale T, et al. Strain engineering for high-level 5-aminolevulinic acid production in Escherichia coli. Biotechnology and Bioengineering, 2021, 118(1):30-42.
doi: 10.1002/bit.v118.1
[33]   Zhu C C, Chen J Z, Wang Y, et al. Enhancing 5-aminolevulinic acid tolerance and production by engineering the antioxidant defense system of Escherichia coli. Biotechnology and Bioengineering, 2019, 116(8):2018-2028.
doi: 10.1002/bit.v116.8
[34]   Lanéelle M A, Tropis M, Daffé M. Current knowledge on mycolic acids in Corynebacterium glutamicum and their relevance for biotechnological processes. Applied Microbiology and Biotechnology, 2013, 97(23):9923-9930.
doi: 10.1007/s00253-013-5265-3
[35]   沈观宇. 外向转运蛋白对重组大肠杆菌5-氨基乙酰丙酸发酵的影响. 杭州: 浙江大学, 2018.
[35]   Shen G Y. Effect of exporters on 5-aminolevulinic acid fermentation by recombinant Escherichia coli. Hangzhou: Zhejiang University, 2018.
[36]   Kang Z, Gao C J, Wang Q, et al. A novel strategy for succinate and polyhydroxybutyrate co-production in Escherichia coli. Bioresource Technology, 2010, 101(19):7675-7678.
doi: 10.1016/j.biortech.2010.04.084
[37]   Layer G, Reichelt J, Jahn D, et al. Structure and function of enzymes in heme biosynthesis. Protein Science, 2010, 19(6):1137-1161.
doi: 10.1002/pro.405
[38]   Kang Z, Wang Y, Gu P F, et al. Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose. Metabolic Engineering, 2011, 13(5):492-498.
doi: 10.1016/j.ymben.2011.05.003
[39]   Zhao A G, Zhai M Z. Production of 5-aminolevulinic acid from glutamate by overexpressing HemA1 and pgr7 from Arabidopsis thaliana in Escherichia coli. World Journal of Microbiology and Biotechnology, 2019, 35(11):1-9.
doi: 10.1007/s11274-018-2566-9
[40]   Zhang J L, Weng H J, Zhou Z X, et al. Engineering of multiple modular pathways for high-yield production of 5-aminolevulinic acid in Escherichia coli. Bioresource Technology, 2019, 274:353-360.
doi: 10.1016/j.biortech.2018.12.004
[41]   Zhang C L, Li Y J, Zhu F Z, et al. Metabolic engineering of an auto-regulated Corynebacterium glutamicum chassis for biosynthesis of 5-aminolevulinic acid. Bioresource Technology, 2020, 318:124064.
doi: 10.1016/j.biortech.2020.124064
[42]   Noh M H, Lim H G, Park S, et al. Precise flux redistribution to glyoxylate cycle for 5-aminolevulinic acid production in Escherichia coli. Metabolic Engineering, 2017, 43:1-8.
doi: 10.1016/j.ymben.2017.07.006
[43]   Zhang J L, Kang Z, Ding W W, et al. Integrated optimization of the in vivo heme biosynthesis pathway and the in vitro iron concentration for 5-aminolevulinate production. Applied Biochemistry and Biotechnology, 2016, 178(6):1252-1262.
doi: 10.1007/s12010-015-1942-2
[44]   Yu X L, Jin H Y, Liu W J, et al. Engineering Corynebacterium glutamicum to produce 5-aminolevulinic acid from glucose. Microbial Cell Factories, 2015, 14:183.
doi: 10.1186/s12934-015-0364-8
[45]   Ramzi A B, Hyeon J E, Kim S W, et al. 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway. Enzyme and Microbial Technology, 2015, 81:1-7.
doi: 10.1016/j.enzmictec.2015.07.004
[46]   Ko Y J, You S K, Kim M, et al. Enhanced production of 5-aminolevulinic acid via flux redistribution of TCA cycle toward l-glutamate in Corynebacterium glutamicum. Biotechnology and Bioprocess Engineering, 2019, 24(6):915-923.
doi: 10.1007/s12257-019-0376-z
[47]   Zhang J, Wang Z G, Su T Y, et al. Tuning the binding affinity of heme-responsive biosensor for precise and dynamic pathway regulation. iScience, 2020, 23(5):101067.
doi: 10.1016/j.isci.2020.101067
[48]   Kwon O H, Kim S, Hahm D H, et al. Potential application of the recombinant Escherichia coli-synthesized heme as a bioavailable iron source. Journal of Microbiology and Biotechnology, 2009, 19(6):604-609.
[49]   Lee M J, Kim H J, Lee J Y, et al. Effect of gene amplifications in porphyrin pathway on heme biosynthesis in a recombinant Escherichia coli. Journal of Microbiology and Biotechnology, 2013, 23(5):668-673.
doi: 10.4014/jmb
[50]   Dailey H A, Dailey T A, Gerdes S, et al. Prokaryotic heme biosynthesis: multiple pathways to a common essential product. Microbiology and Molecular Biology Reviews, 2017, 81(1):e00048-16.
[51]   Kwon S J, de Boer A L, Petri R, et al. High-level production of porphyrins in metabolically engineered Escherichia coli: systematic extension of a pathway assembled from overexpressed genes involved in heme biosynthesis. Applied and Environmental Microbiology, 2003, 69(8):4875-4883.
doi: 10.1128/AEM.69.8.4875-4883.2003
[52]   翁焕娇, 丁雯雯, 石雅南, 等. 基于模块化优化策略强化大肠杆菌合成血红素. 食品与生物技术学报, 2019, 38(6):86-94.
[52]   Weng H J, Ding W W, Shi Y N, et al. Enhancement of heme synthesis pathway in Escherichia coli via a modular optimization strategy. Journal of Food Science and Biotechnology, 2019, 38(6):86-94.
[53]   Troxell B, Hassan H M. Transcriptional regulation by ferric uptake regulator (Fur) in pathogenic bacteria. Frontiers in Cellular and Infection Microbiology, 2013, 3:59.
doi: 10.3389/fcimb.2013.00059 pmid: 24106689
[54]   李蒙蒙. 铁摄取调节子与亚铁鳌合酶基因表达对大肠杆菌血红素合成的调控. 无锡: 江南大学, 2019.
[54]   Li M M. Regulation of iron uptake regulator and ferrochelatase gene expression on heme synthesis of Escherichia coli. Wuxi: Jiangnan University, 2019.
[55]   于晓丽. 利用谷氨酸棒杆菌中血红素合成途径积累5-氨基乙酰丙酸的研究. 济南: 山东大学, 2016.
[55]   Yu X L. Accumulation of 5-aminolevulinic acid by Corynebaererium glutamicum using heme biosynthesis pathway. Jinan: Shandong University, 2016.
[56]   Ko Y J, Joo Y C, Hyeon J E, et al. Biosynthesis of organic photosensitizer Zn-porphyrin by diphtheria toxin repressor (DtxR)-mediated global upregulation of engineered heme biosynthesis pathway in Corynebacterium glutamicum. Scientific Reports, 2018, 8(1):14460.
doi: 10.1038/s41598-018-32854-9
[57]   Turlin E, Heuck G, Simões Brandão M I, et al. Protoporphyrin (PPIX) efflux by the MacAB-TolC pump in Escherichia coli. Microbiology Open, 2014, 3(6):849-859.
doi: 10.1002/mbo3.2014.3.issue-6
[58]   杨燕. rhtAtolC的表达对大肠杆菌血红素合成的影响. 无锡: 江南大学, 2019.
[58]   Yang Y. Effect of expression of rhtA and tolC on heme synthesis in Escherichia coli. Wuxi: Jiangnan University, 2019.
[59]   Feissner R E, Richard-Fogal C L, Frawley E R, et al. ABC transporter-mediated release of a haem chaperone allows cytochrome c biogenesis. Molecular Microbiology, 2006, 61(1):219-231.
pmid: 16824107
[60]   Zhao X R, Choi K R, Lee S Y. Metabolic engineering of Escherichia coli for secretory production of free haem. Nature Catalysis, 2018, 1(9):720-728.
doi: 10.1038/s41929-018-0126-1
[61]   Pranawidjaja S, Choi S I, Lay B W, et al. Analysis of heme biosynthetic pathways in a recombinant Escherichia coli. Journal of Microbiology and Biotechnology, 2015, 25(6):880-886.
pmid: 25537720
[62]   Seok J, Ko Y J, Lee M E, et al. Systems metabolic engineering of Corynebacterium glutamicum for the bioproduction of biliverdin via protoporphyrin independent pathway. Journal of Biological Engineering, 2019, 13:28.
doi: 10.1186/s13036-019-0156-5
[63]   Lee M J, Chun S J, Kim H J, et al. Porphyrin derivatives from a recombinant Escherichia coli grown on chemically defined medium. Journal of Microbiology and Biotechnology, 2012, 22(12):1653-1658.
doi: 10.4014/jmb
[64]   陈丹园, 沈云杰, 杨燕, 等. 关键酶基因的过表达与环境因素对大肠杆菌血红素合成的调控. 食品与发酵工业, 2018, 44(11):7-14.
[64]   Chen D Y, Shen Y J, Yang Y, et al. Regulation of heme synthesis in Escherichia coli by overexpression of genes for the key enzymes and environmental factors. Food and Fermentation Industries, 2018, 44(11):7-14.
[65]   赵鑫锐, 张国强, 李雪良, 等. 人造肉大规模生产的商品化技术. 食品与发酵工业, 2019, 45(11):248-253.
[65]   Zhao X R, Zhang G Q, Li X L, et al. Commercial production of artificial meat. Food and Fermentation Industries, 2019, 45(11):248-253.
[1] MA Qiao-ni,WANG Meng,ZHU Xing-quan. Research Advances in Recombinase-aided Amplification Technology and Its Application in Rapid Detection of Pathogenic Microorganisms[J]. China Biotechnology, 2021, 41(6): 45-49.
[2] SHAO Ying-zhi,CHE Jian,CHENG Chi,JIANG Zhi-yang,XUE Chuang. Advances in Molecular Biological Methods to Improve Extracellular Electron Transport Efficiency of Electroactive Microorganisms[J]. China Biotechnology, 2021, 41(6): 50-59.
[3] LV Xue-qin, JIN Ke, LIU Jia-heng, CUI Shi-xiu, LI Jiang-hua, DU Guo-cheng, LIU Long. Quantitative Analysis of Membrane Ordering of Living Industrial Model Microorganisms[J]. China Biotechnology, 2021, 41(1): 20-29.
[4] YU Guang-hai, PENG Hai-fen, WANG Ao-yu. Research Progress of Avilamycin Biosynthesis[J]. China Biotechnology, 2021, 41(1): 94-102.
[5] CHANG Lu, HUANG Jiao-fang, DONG Hao, ZHOU Bin-hui, ZHU Xiao-juan, ZHUANG Ying-ping. A Review on Bioremediation and Detection of Heavy Metal Pollution by Synthetic Biological Engineered Microorganisms and Biofilms[J]. China Biotechnology, 2021, 41(1): 62-71.
[6] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[7] GAO Xiao-peng,HE Meng-chao,XU Ke,LI Chun. Research Progress on pH Regulation in the Process of Industrial Microbial Fermentation[J]. China Biotechnology, 2020, 40(6): 93-99.
[8] WANG Meng,ZHANG Quan,GAO Hui-peng,GUAN Hao,CAO Chang-hai. Research Progress on the Biological Fermentation of Xylitol[J]. China Biotechnology, 2020, 40(3): 144-153.
[9] CAO Bi-pu,MIAO Li-hua,GUO Bao-yan,HE Li-ping. The Feasibility Analysis That Nanopore Sequencing Technology Is Applied to Food Microbiological Detection[J]. China Biotechnology, 2018, 38(12): 91-98.
[10] Zhan-ku SHI,Meng-liang WEN,Jiang-yuan ZHAO,Ming-gang LI,Xiu-lin HAN. Recent Advances in Biosynthesis of 1,8-Cineole[J]. China Biotechnology, 2018, 38(11): 92-102.
[11] Zheng-san ZUO,Dong-sheng GUO,Xiao-jun JI,Ping SONG,He HUANG. Polyunsaturated Fatty Acids and Their Derivatives in the Intestinal Tract:a Review[J]. China Biotechnology, 2018, 38(11): 66-75.
[12] SHI Gui-qin, ZHOU Wen-shan, REN Fei. Research Progress on Increasing SOD Production by Microorganism Fermentation[J]. China Biotechnology, 2017, 37(4): 115-124.
[13] WU Lin-huan, LU Zhen-ming, GONG Jin-song, SHI Jin-song, XU Zheng-hong. Integrating Distributed Heterogeneous Food Microorganism Data by Semantic Web Technology[J]. China Biotechnology, 2017, 37(3): 124-132.
[14] LI Xiao-bo, LIU Xue, ZHAO Guang-rong. Advances on Flavonoid Glycosides Production of Engineered Microorganisms[J]. China Biotechnology, 2016, 36(8): 105-112.
[15] CHEN Juan, YANG Hui-lin, HUANG Yun-hong, LONG Zhong-er. Screening of the Protein Related to Antibiotics Biosynthesis in Micromonospora carbonacea JXNU-1[J]. China Biotechnology, 2016, 36(7): 55-63.