Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (3): 91-98    DOI: 10.13523/j.cb.2108045
    
Effects of Synonymous Codon Usage Patterns on Protein Product Expression and Conformation Formation
PU Fei-yang1,2,LI Yi-cong1,2,WANG Hui-hui1,2,FENG Xi-li1,2,LI Zhuo1,2,MA Zhong-ren1,ZHOU Jian-hua1,3,**()
1 Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
2 College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730010, China
3 Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
Download: HTML   PDF(2489KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The degeneracy in genetic codons further improves the capacity of genetic information. The genetic feature leads to synonymous codon usage bias representing a universal feature across all organisms’ genomes. Although synonymous codon usage variations in genes have no effects on the amino acid compositions, more and more studies point out that synonymous codon usage bias plays an important role in half-life of gene transcriptions, translational efficiency and accuracy and folding structure via fine-tune translation regulation mechanisms. Synonymous codons are used to mediate the translation rates in the process of ribosomal for transferring tRNA following the specific amino acid sequence, and the co-translation mechanism regulates the correct folding structure of the newborn peptide chain to ensure the normal biological function of the protein product. In particular, some synonymous codon usage patterns have the significantly positive correlations with folding structure formation of protein, since changes in synonymous codon usage bias could lead to folding structure of protein. Based on the previous reports in recent years, we review the related context for synonymous codon bias in fine-tune translation regulation.



Key wordsSynonymous codon      Gene      Peptide      Fine-tune translation selection      Co-translation mechanism      Folding structure     
Received: 18 August 2021      Published: 07 April 2022
ZTFLH:  Q819  
Corresponding Authors: Jian-hua ZHOU     E-mail: zhoujianhuazjh@163.com
Cite this article:

PU Fei-yang,LI Yi-cong,WANG Hui-hui,FENG Xi-li,LI Zhuo,MA Zhong-ren,ZHOU Jian-hua. Effects of Synonymous Codon Usage Patterns on Protein Product Expression and Conformation Formation. China Biotechnology, 2022, 42(3): 91-98.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2108045     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I3/91

Fig.1 The overview of potential effects of synonymous codon usages in genes on transcription and translation processes
Fig.2 The effects of translational scanning speeds of ribosome on shaping the specific folding structures of peptide chain
Fig.3 The effects of synonymous codon usage patterns on the processes in gene replication, transcription and translation
[1]   尚方建, 石哲芳, 王聪, 等. 新型冠状病毒(SARS-CoV-2)的密码子偏爱性分析. 中国人兽共患病学报, 2021, 37(1):15-21, 38.
[1]   Shang F J, Shi Z F, Wang C, et al. Analysis of SARS-CoV-2 codon usage preference. Chinese Journal of Zoonoses, 2021, 37(1):15-21, 38.
[2]   Plotkin J B, Kudla G. Synonymous but not the same: the causes and consequences of codon bias. Nature Reviews Genetics, 2011, 12(1):32-42.
doi: 10.1038/nrg2899 pmid: 21102527
[3]   Liu Y, Yang Q, Zhao F Z. Synonymous but not silent: the codon usage code for gene expression and protein folding. Annual Review of Biochemistry, 2021, 90:375-401.
doi: 10.1146/annurev-biochem-071320-112701 pmid: 33441035
[4]   廖丹妮, 张昭旸, 靳瑾, 等. 微生物tRNA与密码子系统应用研究进展. 中国生物工程杂志, 2021, 41(4):64-73.
[4]   Liao D N, Zhang Z Y, Jin J, et al. Progress in the study of microbial tRNA and genetic codon system related applications. China Biotechnology, 2021, 41(4):64-73.
[5]   赵旭东, 黄永志, 毕延震, 等. 动物转基因高效表达策略研究进展. 生物技术通报, 2020, 36(3):45-53.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0989
[5]   Zhao X D, Huang Y Z, Bi Y Z, et al. Strategies for efficient exogenous gene expression in transgenic animals. Biotechnology Bulletin, 2020, 36(3):45-53.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0989
[6]   Yang Q, Lyu X L, Zhao F Z, et al. Effects of codon usage on gene expression are promoter context dependent. Nucleic Acids Research, 2021, 49(2):818-831.
doi: 10.1093/nar/gkaa1253
[7]   Dong H J, Nilsson L, Kurland C G. Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. Journal of Molecular Biology, 1996, 260(5):649-663.
pmid: 8709146
[8]   Kane J F. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Current Opinion in Biotechnology, 1995, 6(5):494-500.
pmid: 7579660
[9]   Li G W, Oh E, Weissman J S. The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria. Nature, 2012, 484(7395):538-541.
doi: 10.1038/nature10965
[10]   Zhou J H, Zhang J, Sun D J, et al. Potential roles of synonymous codon usage and tRNA concentration in hosts on the two initiation regions of foot-and-mouth disease virus RNA. Virus Research, 2013, 176(1-2):298-302.
doi: 10.1016/j.virusres.2013.06.006
[11]   Zhou J H, Zhang J, Ding Y Z, et al. Characteristics of codon usage bias in two regions downstream of the initiation codons of foot-and-mouth disease virus. Biosystems, 2010, 101(1):20-28.
doi: 10.1016/j.biosystems.2010.04.001
[12]   Ma X X, Feng Y P, Gu Y X, et al. Effect of the nucleotides surrounding the start codon on the translation of foot-and-mouth disease virus RNA. Acta Virologica, 2016, 60(2):151-155.
pmid: 27265464
[13]   Li B, Xiao S B, Wang Y W, et al. Immunogenicity of the highly pathogenic porcine reproductive and respiratory syndrome virus GP5 protein encoded by a synthetic ORF5 gene. Vaccine, 2009, 27(13):1957-1963.
doi: 10.1016/j.vaccine.2009.01.098
[14]   Bahir I, Fromer M, Prat Y, et al. Viral adaptation to host: a proteome-based analysis of codon usage and amino acid preferences. Molecular Systems Biology, 2009, 5:311.
doi: 10.1038/msb.2009.71 pmid: 19888206
[15]   Zhou J H, Li X R, Lan X, et al. The genetic divergences of codon usage shed new lights on transmission of hepatitis E virus from swine to human. Infection, Genetics and Evolution, 2019, 68:23-29.
doi: 10.1016/j.meegid.2018.11.024
[16]   Ge Z Y, Li X R, Cao X A, et al. Viral adaption of staphylococcal phage: a genome-based analysis of the selective preference based on codon usage Bias. Genomics, 2020, 112(6):4657-4665.
doi: 10.1016/j.ygeno.2020.08.012
[17]   Zhou J H, Gao Z L, Zhang J, et al. The analysis of codon bias of foot-and-mouth disease virus and the adaptation of this virus to the hosts. Infection, Genetics and Evolution, 2013, 14:105-110.
doi: 10.1016/j.meegid.2012.09.020
[18]   Hanson G, Coller J. Codon optimality, bias and usage in translation and mRNA decay. Nature Reviews Molecular Cell Biology, 2018, 19(1):20-30.
doi: 10.1038/nrm.2017.91 pmid: 29018283
[19]   Brule C E, Grayhack E J. Synonymous codons: choose wisely for expression. Trends in Genetics, 2017, 33(4):283-297.
doi: 10.1016/j.tig.2017.02.001
[20]   Yu C H, Dang Y K, Zhou Z P, et al. Codon usage influences the local rate of translation elongation to regulate co-translational protein folding. Molecular Cell, 2015, 59(5):744-754.
doi: 10.1016/j.molcel.2015.07.018
[21]   任元雪, 高鑫, 刘茜, 等. 密码子优化提高狂犬病病毒CTN-1株核蛋白在大肠埃希菌中的表达. 中华微生物学和免疫学杂志, 2021, 41(5):333-337.
[21]   Ren Y X, Gao X, Liu Q, et al. Codon optimization improves the expression of nucleoprotein of rabies virus CTN-1 strain in E.coli. Chinese Journal of Microbiology and Immunology, 2021, 41(5):333-337.
[22]   Zhou J H, You Y N, Chen H T, et al. The effects of the synonymous codon usage and tRNA abundance on protein folding of the 3C protease of foot-and-mouth disease virus. Infection,Genetics and Evolution, 2013, 16:270-274.
doi: 10.1016/j.meegid.2013.02.017
[23]   Chen F, Wu P, Deng S Y, et al. Dissimilation of synonymous codon usage bias in virus-host coevolution due to translational selection. Nature Ecology & Evolution, 2020, 4(4):589-600.
[24]   Ferina J, Daggett V. Visualizing protein folding and unfolding. Journal of Molecular Biology, 2019, 431(8):1540-1564.
doi: 10.1016/j.jmb.2019.02.026
[25]   Spencer P S, Siller E, Anderson J F, et al. Silent substitutions predictably alter translation elongation rates and protein folding efficiencies. Journal of Molecular Biology, 2012, 422(3):328-335.
doi: 10.1016/j.jmb.2012.06.010 pmid: 22705285
[26]   Buhr F, Jha S, Thommen M, et al. Synonymous codons direct cotranslational folding toward different protein conformations. Molecular Cell, 2016, 61(3):341-351.
doi: 10.1016/j.molcel.2016.01.008
[27]   Kimchi-Sarfaty C, Oh J M, Kim I W, et al. A "silent" polymorphism in the MDR1 gene changes substrate specificity. Science, 2007, 315(5811):525-528.
pmid: 17185560
[28]   Zhou M, Wang T, Fu J J, et al. Nonoptimal codon usage influences protein structure in intrinsically disordered regions. Molecular Microbiology, 2015, 97(5):974-987.
doi: 10.1111/mmi.2015.97.issue-5
[29]   Zhou M, Guo J H, Cha J, et al. Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature, 2013, 495(7439):111-115.
doi: 10.1038/nature11833
[30]   Fu J J, Murphy K A, Zhou M, et al. Codon usage affects the structure and function of the Drosophila circadian clock protein period. Genes & Development, 2016, 30(15):1761-1775.
doi: 10.1101/gad.281030.116
[31]   Kim S J, Yoon J S, Shishido H, et al. Translational tuning optimizes nascent protein folding in cells. Science, 2015, 348(6233):444-448.
doi: 10.1126/science.aaa3974
[32]   Kirchner S, Cai Z W, Rauscher R, et al. Alteration of protein function by a silent polymorphism linked to tRNA abundance. PLoS Biology, 2017, 15(5):e2000779.
doi: 10.1371/journal.pbio.2000779
[33]   Alexaki A, Hettiarachchi G K, Athey J C, et al. Effects of codon optimization on coagulation factor IX translation and structure: implications for protein and gene therapies. Scientific Reports, 2019, 9:15449.
doi: 10.1038/s41598-019-51984-2
[34]   Hunt R, Hettiarachchi G, Katneni U, et al. A single synonymous variant (c.354G>A [p.P118P]) in ADAMTS13 confers enhanced specific activity. International Journal of Molecular Sciences, 2019, 20(22):5734.
doi: 10.3390/ijms20225734
[35]   Spanne P. X-ray energy optimisation in computed microtomography. Physics in Medicine and Biology, 1989, 34(6):679-690.
pmid: 2740436
[36]   Tang C T, Li S, Long C, et al. Setting the pace of the Neurospora circadian clock by multiple independent FRQ phosphorylation events. PNAS, 2009, 106(26):10722-10727.
doi: 10.1073/pnas.0904898106
[37]   Baker C L, Kettenbach A N, Loros J J, et al. Quantitative proteomics reveals a dynamic interactome and phase-specific phosphorylation in the Neurospora circadian clock. Molecular Cell, 2009, 34(3):354-363.
doi: 10.1016/j.molcel.2009.04.023
[38]   郑超星, 马小凤, 张永华, 等. 真核生物mRNA翻译起始机制研究进展. 遗传, 2018, 40(8):607-619.
[38]   Zheng C X, Ma X F, Zhang Y H, et al. Research progress in the mechanism of translation initiation of eukaryotic mRNAs. Hereditas(Beijing), 2018, 40(8):607-619.
[39]   肇涛澜, 张硕, 钱文峰. 翻译延伸的顺式调控机理与生物学效应. 遗传, 2020, 42(7):613-631.
[39]   Zhao T L, Zhang S, Qian W F. Cis-regulatory mechanisms and biological effects of translation elongation. Hereditas(Beijing), 2020, 42(7):613-631.
[40]   Gingold H, Tehler D, Christoffersen N R, et al. A dual program for translation regulation in cellular proliferation and differentiation. Cell, 2014, 158(6):1281-1292.
doi: S0092-8674(14)01042-3 pmid: 25215487
[41]   Van Bortle K, Phanstiel D H, Snyder M P. Topological organization and dynamic regulation of human tRNA genes during macrophage differentiation. Genome Biology, 2017, 18(1):180.
doi: 10.1186/s13059-017-1310-3 pmid: 28931413
[42]   Bornelöv S, Selmi T, Flad S, et al. Codon usage optimization in pluripotent embryonic stem cells. Genome Biology, 2019, 20(1):119.
doi: 10.1186/s13059-019-1726-z pmid: 31174582
[43]   Torrent M, Chalancon G, de Groot N S, et al. Cells alter their tRNA abundance to selectively regulate protein synthesis during stress conditions. Science Signaling, 2018, 11(546): eaat6409.
[44]   Goodarzi H, Nguyen H C B, Zhang S, et al. Modulated expression of specific tRNAs drives gene expression and cancer progression. Cell, 2016, 165(6):1416-1427.
doi: S0092-8674(16)30649-3 pmid: 27259150
[45]   Clarke T F, Clark P L. Increased incidence of rare codon clusters at 5' and 3' gene termini: implications for function. BMC Genomics, 2010, 11:118.
doi: 10.1186/1471-2164-11-118
[46]   Pechmann S, Chartron J W, Frydman J. Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo. Nature Structural & Molecular Biology, 2014, 21(12):1100-1105.
doi: 10.1038/nsmb.2919
[47]   Sanguinetti M, Iriarte A, Amillis S, et al. A pair of non-optimal codons are necessary for the correct biosynthesis of the Aspergillus nidulans urea transporter, UreA. Royal Society Open Science, 2019, 6(11):190773.
doi: 10.1098/rsos.190773
[48]   Zhang G, Hubalewska M, Ignatova Z. Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nature Structural & Molecular Biology, 2009, 16(3):274-280.
doi: 10.1038/nsmb.1554
[49]   Saunders R, Deane C M. Synonymous codon usage influences the local protein structure observed. Nucleic Acids Research, 2010, 38(19):6719-6728.
doi: 10.1093/nar/gkq495 pmid: 20530529
[50]   Zhou J H, Zhang J, Chen H T, et al. The codon usage model of the context flanking each cleavage site in the polyprotein of foot-and-mouth disease virus. Infection, Genetics and Evolution, 2011, 11(7):1815-1819.
doi: 10.1016/j.meegid.2011.07.014
[51]   Gao Z L, Zhou J H, Zhang J, et al. The silent point mutations at the cleavage site of 2A/2B have no effect on the self-cleavage activity of 2A of foot-and-mouth disease virus. Infection, Genetics and Evolution, 2014, 28:101-106.
doi: 10.1016/j.meegid.2014.08.006
[1] DONG Hui-xia, HOU Zhan-ming. Folprp4 Gene Involved in the Conidiogenesis and Mycelial Growth in Fusarium oxysporum f. sp. lini[J]. China Biotechnology, 2022, 42(3): 13-26.
[2] LI Xiao-jin,LI Yan-meng,LI Zhen-kun,XU An-jian,YANG Xiao-xi,HUANG Jian. The Mechanism of Copper Accumulation Induced Autophagy in Hepatocytes of ATP7B-deficient Mice Based on RNA-sequencing[J]. China Biotechnology, 2021, 41(9): 10-19.
[3] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[4] HUANG Huan-bang,WU Yang,YANG You-hui,WANG Zhao-guan,QI Hao. Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase[J]. China Biotechnology, 2021, 41(9): 110-125.
[5] WU Xiu-zhi,WANG Hong-jie,ZU Yao. Functional Study of hoxa1a Regulating Craniofacial Bone Development in Zebrafish[J]. China Biotechnology, 2021, 41(9): 20-26.
[6] HE Li-heng,ZHANG Yi,ZHANG Jie,REN Yu-chao,XIE Hong-e,TANG Rui-min,JIA Xiao-yun,WU Zong-xin. Construction of Gene Co-expression Network and Identification of Hub Genes Related to Anthocyanin Biosynthesis Based on RNA-seq and WGCNA in Sweetpotato[J]. China Biotechnology, 2021, 41(9): 27-36.
[7] CHEN Ya-chao,LI Nan-nan,LIU Zi-di,HU Bing,LI Chun. Metagenomic Mining of Functional Genes Related to Glycyrrhizin Synthesis from Endophytes of Licorice[J]. China Biotechnology, 2021, 41(9): 37-47.
[8] YANG Liu,MOU Hao,XU Guo-yang,BAI Yun-chuan,YU Yuan-di. Analysis of the Difference in Color Development of Cultured Goatpox Virus Common Cells in X-gal Environment[J]. China Biotechnology, 2021, 41(9): 48-54.
[9] ZHAO Xiao-yu,XU Qi-ling,ZHAO Xiao-dong,AN Yun-fei. Enhancing Lentiviral Vector Transduction Efficiency for Facilitating Gene Therapy[J]. China Biotechnology, 2021, 41(8): 52-58.
[10] YANG Wan-bin,XU Yan,ZHUO Shi-xuan,WANG Xin-yi,LI Ya-jing,GUO Yi-fan,ZHANG Zheng-guang,GUO Yuan-yuan. Progress of Long Non-coding RNAs Related Epigenetic Modifications in Cancer[J]. China Biotechnology, 2021, 41(8): 59-66.
[11] GUO Man-man,TIAN Kai-ren,QIAO Jian-jun,LI Yan-ni. Application of Phage Recombinase Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(8): 90-102.
[12] Bao-qi FENG,Jiao FENG,Miao ZHANG,Yang LIU,Rui CAO,Han-zhi YIN,Feng-xian QI,Zi-long LI,Shou-liang YIN. Screening of High Avermectin-producing Strains via Tn5 Transposon Mediated Mutagenesis[J]. China Biotechnology, 2021, 41(7): 32-41.
[13] LI Kai-xiu,SI Wei. Progress in the Treatment of Inflammatory Bowel Diseases by Exosomes Derived from Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(7): 66-73.
[14] WANG Yu-xuan,CHEN Ting,ZHANG Yong-liang. Research Progress on the Biological Function of MiR-148[J]. China Biotechnology, 2021, 41(7): 74-80.
[15] LIANG Jin-gang,ZHANG Xu-dong,BI Yan-zhe,WANG Hao-qian,ZHANG Xiu-jie. Development Status and Prospect of Genetically Modified Insect-resistant Maize[J]. China Biotechnology, 2021, 41(6): 98-104.