Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (9): 37-47    DOI: 10.13523/j.cb.2104040
    
Metagenomic Mining of Functional Genes Related to Glycyrrhizin Synthesis from Endophytes of Licorice
CHEN Ya-chao1,LI Nan-nan1,LIU Zi-di1,HU Bing1,**(),LI Chun2
1 Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
2 Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
Download: HTML   PDF(2015KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective:Licorice is widely used as a traditional Chinese medicine. Glycyrrhizin is the main active ingredient in licorice, a pentacyclic trterpenoid compound, has many pharmaceutical functions, such as anti-inflammatory, antiviral, and liver protection, and has been used in the clinical treatment of COVID-19. With the development of metabolic engineering and synthetic biology, the microbial synthesis of glycyrrhizin and its precursors has been gradually realized. However, the yield is low due to the incompatibility between plant genes and microbial chassis. In last decades, endophytes have been reported to harbor a wealth of functional traits, and could be directly or indirectly used for the production of plant-derived active compounds, indicating that investigation on endophytes has great academic potentials and application values in the field of metabolic engineering. Therefore, this study intends to conduct an in-depth study on the endophyte community of licorice and dig out the microbial-source functional genes that can be used for glycyrrhizin synthesis.Methods:In this study, three year old main root samples of Glycyrrhiza uralensis were collected from Emin County, Tacheng City, Xinjiang Uygur Autonomous Reyion. Metagenomic sequencing of endophytic communities was carried out, and the community structure and functional gene diversity of endophytic communities were analyzed. Through functional gene annotation and phylogenetic analysis, functional genes that may be involved in glycyrrhizin synthesis were excavated.Results:By analyzing the abundance of the community structure, it was found that the dominant endophytes in the licorice root were Steroidobacter denitrificans, Phenylobacterium zucineum, unclassified Phenylobacterium, and Phenylobacterium sp.. The metagenomic data were functionally annotated by COG database, KEGG database, and CAZy database, and the endophytic genes encoding enzymes involved in glycyrrhizin synthetic pathway, such as cytochrome P450 and UDP-glycosyltransferase, were found to be abundant in the endophytes of licorice.Conclusion:This study was the first to use metagenomic sequencing and analysis methods to understand the community structure and functional gene composition of endophytes from G. uralensis. It was proved that the endophytic community contained abundant cytochrome P450 and UGT coding genes, which laid a theoretical foundation for further comprehensive and in-depth study of the biological functions of endophytes from G. uralensis and how they transform into glycyrrhizin biosynthesis resources.



Key wordsEndophytes of licorice      Metagenomic sequencing      Microbial diversity      Glycyrrhizin      Functional gene     
Received: 23 April 2021      Published: 30 September 2021
ZTFLH:  Q812  
Corresponding Authors: Bing HU     E-mail: binghu319@bit.edu.cn
Cite this article:

CHEN Ya-chao,LI Nan-nan,LIU Zi-di,HU Bing,LI Chun. Metagenomic Mining of Functional Genes Related to Glycyrrhizin Synthesis from Endophytes of Licorice. China Biotechnology, 2021, 41(9): 37-47.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2104040     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I9/37

Fig.1 The biosynthetic pathway for glycyrrhizin
Sequence item w3 w4 w5
Raw reads 214 391 206 172 187 490 180 120 670
Raw base/bp 32 373 072 106 26 000 310 990 27 198 221 170
Clean reads 208 608 530 160 250 532 173 082 754
Clean base/bp 31 313 310 575 23 984 115 320 26 007 389 055
Contigs 1 457 799 743 110 955 739
ORFs 1 812 581 866 525 1 201 827
Table 1 Overview of metagenomic data
Fig.2 Community abundance percentage of endophytes in licorice at phylum (a), genus (b) and species (c) levels
功能类别 w3 w4 w5 总和
能源产生与转换 3 920 328 2 332 040 4 144 840 10 397 208
氨基酸运输和代谢 3 854 112 1 935 830 4 317 968 10 107 910
复制、重组和修复 3 766 196 2 372 804 3 474 278 9 613 278
无机离子的转运与代谢 3 573 748 1 680 748 3 986 520 9 241 016
Table 2 COG functional annotation analysis showing the abundances of genes relating to energy metabolism, amino acid metabolism and transport, cell recovery and ion transportation
Fig.3 KEGG functional annotation analysis
碳水化合
物活性酶
w3 w4 w5 总和
GT 925 936 462 804 1 123 438 2 512 178
GH 613 502 309 802 671 576 1 594 880
CE 483 476 226 054 553 738 1 263 268
AA 292 190 151 772 314 934 758 896
PL 51 234 19 540 47 192 117 966
CBM 41 714 19 268 38 956 99 938
Table 3 Overview of CAZy functional annotation and gene abounance
Fig. 4 The proportion of P450s that may be involved in the synthesis of triterpenoids in the total P450s
Fig.5 Phylogenetic analysis of UGTs from endophytes of Glycyrrhiza uralensis with reported UGTs The blue and red sections are reported microbial and plant-derived UGTs, respectively; UGTs obtained in this study are shown in yellow
[1]   Nomura Y, Seki H, Suzuki T, et al. Functional specialization of UDP -glycosyltransferase 73P12 in licorice to produce a sweet triterpenoid saponin, glycyrrhizin. The Plant Journal, 2019, 99(6):1127-1143.
doi: 10.1111/tpj.14409 pmid: 31095780
[2]   Zhao Y J, Lv B, Feng X D, et al. Perspective on biotransformation and de novo biosynthesis of licorice constituents. Journal of Agricultural and Food Chemistry, 2017, 65(51):11147-11156.
doi: 10.1021/acs.jafc.7b04470
[3]   Zhang L, Ren S C, Liu X F, et al. Mining of UDP-glucosyltrfansferases in licorice for controllable glycosylation of pentacyclic triterpenoids. Biotechnology and Bioengineering, 2020, 117(12):3651-3663.
doi: 10.1002/bit.v117.12
[4]   Matsui S, Matsumoto H, Sonoda Y, et al. Glycyrrhizin and related compounds down-regulate production of inflammatory chemokines IL-8 and eotaxin 1 in a human lung fibroblast cell line. International Immunopharmacology, 2004, 4(13):1633-1644.
doi: 10.1016/j.intimp.2004.07.023
[5]   Huang R Y, Chu Y L, Jiang Z B, et al. Glycyrrhizin suppresses lung adenocarcinoma cell growth through inhibition of thromboxane synthase. Cellular Physiology and Biochemistry, 2014, 33(2):375-388.
doi: 10.1159/000356677
[6]   Cinatl J, Morgenstern B, Bauer G, et al. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. The Lancet, 2003, 361(9374):2045-2046.
doi: 10.1016/S0140-6736(03)13615-X
[7]   Murck H. Symptomatic protective action of glycyrrhizin (licorice) in COVID-19 infection? Frontiers in Immunology, 2020, 11:1239. DOI: 10.3389/fimmu.2020.01239.
doi: 10.3389/fimmu.2020.01239
[8]   Bailly C, Vergoten G. Glycyrrhizin: an alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome? Pharmacology & Therapeutics, 2020, 214:107618.
[9]   Sun W T, Qin L, Xue H J, et al. Novel trends for producing plant triterpenoids in yeast. Critical Reviews in Biotechnology, 2019, 39(5):618-632.
doi: 10.1080/07388551.2019.1608503
[10]   Wang W, He P, Zhao D D, et al. Construction of Escherichia coli cell factories for crocin biosynthesis. Microbial Cell Factories, 2019, 18(1):1-11.
doi: 10.1186/s12934-018-1049-x
[11]   Gupta S, Chaturvedi P, Kulkarni M G, et al. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnology Advances, 2020, 39:107462.
doi: 10.1016/j.biotechadv.2019.107462
[12]   Chen Y C, Hu B, Xing J M, et al. Endophytes: the novel sources for plant terpenoid biosynthesis. Applied Microbiology and Biotechnology, 2021, 105(11):4501-4513.
doi: 10.1007/s00253-021-11350-7
[13]   陈静, 许贞, 张雪, 等. 不同产地甘草内生真菌多样性及分离条件研究. 药学学报, 2019, 54(2):373-379.
[13]   Chen J, Xu Z, Zhang X, et al. Diversity and isolation parameters of endophytes from Glycyrrhiza uralensis of different habitats. Acta Pharmaceutica Sinica, 2019, 54(2):373-379.
[14]   Datta S, Rajnish K N, Samuel M S, et al. Metagenomic applications in microbial diversity, bioremediation, pollution monitoring, enzyme and drug discovery. A review. Environmental Chemistry Letters, 2020, 18(4):1229-1241.
doi: 10.1007/s10311-020-01010-z
[15]   Caparco A A, Pelletier E, Petit J L, et al. Metagenomic mining for amine dehydrogenase discovery. Advanced Synthesis & Catalysis, 2020, 362(12):2427-2436.
[16]   Carrión V J, Perez-Jaramillo J, Cordovez V, et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science, 2019, 366(6465):606-612.
doi: 10.1126/science.aaw9285 pmid: 31672892
[17]   Marshall J R, Yao P Y, Montgomery S L, et al. Screening and characterization of a diverse panel of metagenomic imine reductases for biocatalytic reductive amination. Nature Chemistry, 2021, 13(2):140-148.
doi: 10.1038/s41557-020-00606-w pmid: 33380742
[18]   Mochida K, Sakurai T, Seki H, et al. Draft genome assembly and annotation of Glycyrrhiza uralensis, a medicinal legume. The Plant Journal, 2017, 89(2):181-194.
doi: 10.1111/tpj.13385
[19]   Kergourlay G, Taminiau B, Daube G, et al. Metagenomic insights into the dynamics of microbial communities in food. International Journal of Food Microbiology, 2015, 213:31-39.
doi: 10.1016/j.ijfoodmicro.2015.09.010 pmid: 26414193
[20]   宋素琴, 欧提库尔·玛合木提, 张志东, 等. 新疆胀果甘草内生菌的分离和鉴定. 微生物学通报, 2007, 34(5):867-870.
[20]   Song S Q, Otkur M, Zhang Z D, et al. Isolation and characterization of endophytic microorganisms in glaycyrrhiza inflat bat. from Xinjiang. Microbiology, 2007, 34(5):867-870.
[21]   李文军, 郑素慧, 毛培宏, 等. 新疆胀果甘草内生菌的分离及产甘草酸菌株的筛选. 生物技术, 2008, 18(5):28-31.
[21]   Li W J, Zheng S H, Mao P H, et al. Isolation of endophyte from Glycyrrhiza inflata batalin of Xinjiang uygur autonomous region and screening of glycyrrhizic acid-producing strain. Biotechnology, 2008, 18(5):28-31.
[22]   Tiwari P, Sangwan R S, Sangwan N S. Plant secondary metabolism linked glycosyltransferases: an update on expanding knowledge and Scopes. Biotechnology Advances, 2016, 34(5):714-739.
doi: 10.1016/j.biotechadv.2016.03.006
[23]   Girvan H M, Munro A W. Applications of microbial cytochrome P450 enzymes in biotechnology and synthetic biology. Current Opinion in Chemical Biology, 2016, 31:136-145.
doi: 10.1016/j.cbpa.2016.02.018 pmid: 27015292
[24]   Fiallos-Jurado J, Pollier J, Moses T, et al. Saponin determination, expression analysis and functional characterization of saponin biosynthetic genes in Chenopodium quinoa leaves. Plant Science, 2016, 250:188-197.
doi: S0168-9452(16)30094-2 pmid: 27457995
[25]   Morita M, Shibuya M, Kushiro T, et al. Molecular cloning and functional expression of triterpene synthases from pea (Pisum sativum). European Journal of Biochemistry, 2000, 267(12):3453-3460.
pmid: 10848960
[26]   Hayashi H, Huang P Y, Kirakosyan A, et al. Cloning and characterization of a cDNA encoding β-amyrin synthase involved in glycyrrhizin and soyasaponin biosyntheses in licorice. Biological and Pharmaceutical Bulletin, 2001, 24(8):912-916.
pmid: 11510484
[27]   Iturbe-Ormaetxe I, Haralampidis K, Papadopoulou K, et al. Molecular cloning and characterization of triterpene synthases from Medicago truncatula and Lotus japonicus. Plant Molecular Biology. 2003, 51(5):731-743.
pmid: 12683345
[28]   Zhu M, Wang C X, Sun W T, et al. Boosting 11-oxo-β-amyrin and glycyrrhetinic acid synthesis in Saccharomyces cerevisiae via pairing novel oxidation and reduction system from legume plants. Metabolic Engineering, 2018, 45:43-50.
doi: 10.1016/j.ymben.2017.11.009
[29]   Wilson A E, Tian L. Phylogenomic analysis of UDP-dependent glycosyltransferases provides insights into the evolutionary landscape of glycosylation in plant metabolism. The Plant Journal, 2019, 100(6):1273-1288.
doi: 10.1111/tpj.v100.6
[30]   Brazier-Hicks M, Gershater M, Dixon D, et al. Substrate specificity and safener inducibility of the plant UDP-glucose-dependent family 1 glycosyltransferase super-family. Plant Biotechnology Journal, 2018, 16(1):337-348.
doi: 10.1111/pbi.12775 pmid: 28640934
[31]   Chen K, Hu Z M, Song W, et al. Diversity of O-glycosyltransferases contributes to the biosynthesis of flavonoid and triterpenoid glycosides in Glycyrrhiza uralensis. ACS Synthetic Biology, 2019, 8(8):1858-1866.
doi: 10.1021/acssynbio.9b00171
[32]   Tiwari P, Bae H H. Horizontal gene transfer and endophytes: an implication for the acquisition of novel traits. Plants, 2020, 9(3):305.
doi: 10.3390/plants9030305
[33]   Tiwari R, Nain L, Labrou N E, et al. Bioprospecting of functional cellulases from metagenome for second generation biofuel production: a review. Critical Reviews in Microbiology, 2018, 44(2):244-257.
doi: 10.1080/1040841X.2017.1337713
[34]   Xin Y P, Guo T T, Zhang Y, et al. A new β-galactosidase extracted from the infant feces with high hydrolytic and transgalactosylation activity. Applied Microbiology and Biotechnology, 2019, 103(20):8439-8448.
doi: 10.1007/s00253-019-10092-x
[1] AN Yun-he, CHENG Xiao-yan, TIAN Yan-jie, MA Kai, GAO Li-juan, WU Hui-juan. Influence of DNA Extraction Method on Microbial Diversity Analysis Through Next Generation Sequencing[J]. China Biotechnology, 2017, 37(11): 12-18.
[2] WANG Shi-wei, WANG Qing-hui, ZHAI Li-ping, LIU Jun, ZHENG Miao-miao, WANG Fang, YU Zhi-dan. Applications and Biodiversity of Prokaryotic Microorganisms with Nitrile Converting Enzymes[J]. China Biotechnology, 2015, 35(10): 100-107.
[3] YANG Yi, LI Zhi, GAO Ling-xia, SUN Yan. The Antibiotic Metabolites Genes of Pseudomonas fluorescens[J]. China Biotechnology, 2012, 32(08): 100-106.
[4] LIU Ju-hua, XU Bi-yu, ZHANG Jian-ping, JIA Cai-hong, WANG Jia-shui, ZHANG Jian-bin, JIN Zhi-qiang. Research Progress on Banana Genomics and Functional Genomics Involved in Stress Resistance[J]. China Biotechnology, 2012, 32(03): 110-114.
[5] WANG Shi-wei, WANG Min. Research Process on Microbial Diversity of Producing-nitrile Hydratase and Study on Nitrile Hydratase[J]. China Biotechnology, 2011, 31(9): 117-123.
[6] . Prospect and Progress on Dunaliella salina in the area of Molecular Biology[J]. China Biotechnology, 2007, 27(10): 113-118.