Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (3): 110-123    DOI: 10.13523/j.cb.2109051
    
Research Progress and Future Direction on High-cell-density Heterotrophic Cultivation of Microalgae
ZHANG Hu1,**,ZHAO Liang2,**,CHEN Yi3,GAO Bao-yan1,HU Qiang4,***(),ZHANG Cheng-wu1,***()
1 Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
2 Demeter Biotechnology (Zhuhai) Co., Ltd., Zhuhai 519031, China
3 Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
Download: HTML   PDF(3951KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Microalgae are sources of many important chemicals, such as lipids, proteins, polysaccharides, pigments and polyunsaturated fatty acids, which have a broad range of applications in biofuels, food, feed, nutraceutical, and pharmaceutical industries. However, the low production of microalgal biomass under photoautotrophic cultivation has limited its applications. In contrast, microalgae can grow fast and achieve ultrahigh cell densities under heterotrophic cultivation. These characteristics make heterotrophic cultivation have a promising potential for industrial production of microalgae-based products. This review aims to provide an overview of the advantages and disadvantages in microalgal heterotrophic cultivation, and the factors and strategies affecting microalgal cell growth as well as the current production of several microalgae under high-cell-density heterotrophic cultivation. The path forward for further economical and efficient production of microalgal target compounds under high-cell density heterotrophic culture with respect to four different opportunities is also discussed, which will in turn meet the huge demand of microalgal feedstocks in the above industries and accelerate the development of microalgae industry.



Key wordsMicroalgae      High-cell-density heterotrophic cultivation      Nutrition manner      Environmental factors      Culture strategy     
Received: 30 September 2021      Published: 07 April 2022
ZTFLH:  Q819  
Corresponding Authors: Qiang HU,Cheng-wu ZHANG     E-mail: huqiang@szu.edu.cn;tzhangcw@jnu.edu.cn
Cite this article:

ZHANG Hu, ZHAO Liang, CHEN Yi, GAO Bao-yan, HU Qiang, ZHANG Cheng-wu. Research Progress and Future Direction on High-cell-density Heterotrophic Cultivation of Microalgae. China Biotechnology, 2022, 42(3): 110-123.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2109051     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I3/110

Fig.1 Seed cultures preparation of Scenedesmus acuminatus for outdoor mass culture (10 000 L) (a) Photoautotrophic seed preparation (b) Heterotrophic seed preparation
Fig.2 Two commonly occurred contaminations in heterotrophic culture of S. acuminatus (a) Bacillus sp. (b) Actinomyces sp. Scale bar: 10 μm
Fig.3 Biomass concentration and glucose consumption in fed-batch fermentation of S. acuminatus under two different kinds of feeding strategies[3] (a) Glucose consumption under pulsed feeding strategy (b) Glucose consumption under stepwise constant feeding strategy (c) Biomass concentration under pulsed feeding strategy (d) Biomass concentration under stepwise constant feeding strategy
Algal division Strain Target product Culture
volume
/L
Maximum
biomass
concentration
/(g·L-1)
Average
biomass
productivity
/[g/(L·h-1)]
References
Dinophyta Cryptecodinium cohnii DHA 2.0 109.0 0.27a [14]
Chrysophyta Poterioochromonas malhamensis β-1,3-glucan 7.5 32.8 0.23a [13]
Bacillariophyta Nitzschia laevis EPA 2.2 40.0 0.09a [52]
Bacillariophyta Nitzschia laevis Fucoxanthin 3.0 17.3 0.07a [61]
Rhodophyta Galdieria sulphuraria Phycocyanin 3.0 116.0 0.34a [47]
Rhodophyta Galdieria sulphuraria Phycocyanin 3.0 109.0 0.72 [62]
Chlorophyta Haematococcus pluvialis Astaxanthin 50.0 26.0 0.06 [56]
Chlorophyta Chromochloris zofingiensis Astaxanthin 3.7 71.1 0.24 [57]
Chlorophyta Auxenochlorella protothecoides Lutein 3.7 19.6 0.14 [20]
Chlorophyta Chlorella vulgaris Lutein 5.0 47.4 0.49a [63]
Chlorophyta Chlorella vulgaris Lutein 25 000 49.0 1.53a [63]
Chlorophyta Chlorella vulgaris Lutein 240 000 49.1 1.36a [63]
Chlorophyta Chlorella regularis Phytochemicals 2.6 84.0 2.76 [64]
Chlorophyta Chlorella pyrenoidosa Protein 5.0 132.2 1.50 [65]
Chlorophyta Chlorella pyrenoidosa Protein 50.0 149.4 1.78 [65]
Chlorophyta Chlorella pyrenoidosa Protein 1 500.0 31.1 0.40 [65]
Chlorophyta Botryococcus braunii Hydrocarbons 5.0 37.0 0.06 [66]
Chlorophyta Auxenochlorella protothecoides Lipids 2.0 144.0 0.69a [67]
Chlorophyta Auxenochlorella protothecoides Lipids 5.0 15.5 0.08a [44]
Chlorophyta Auxenochlorella protothecoides Lipids 5.0 51.2 0.28 [30]
Chlorophyta Auxenochlorella protothecoides Lipids 5.0 97.1 0.53a [12]
Chlorophyta Auxenochlorella protothecoides Lipids 5.5 45.2 0.23 [68]
Chlorophyta Auxenochlorella protothecoides Lipids 7.0 46.0 0.26 [68]
Chlorophyta Auxenochlorella protothecoides Lipids 750.0 12.8 0.07a [44]
Chlorophyta Auxenochlorella protothecoides Lipids 11 000.0 14.2 0.07a [44]
Chlorophyta Auxenochlorella protothecoides Lipids 60 000.0 33.1 0.16 [69]
Chlorophyta Chlorella sorokiniana Lipids 50.0 103.8 0.45 [70]
Chlorophyta Scenedesmus acuminatus Lipids 7.5 286.0 1.49 [11]
Chlorophyta Scenedesmus acuminatus Lipids 1 000 283.5 1.69 [11]
Chlorophyta Chlamydomonas reinhardtii Biomass 5.0 23.8 0.10 [71]
Chlorophyta Chlamydomonas reinhardtii Biomass 50.0 25.4 0.11 [71]
Chlorophyta Auxenochlorella protothecoides Biomass 19.0 116.0 0.98a [38]
Chlorophyta Chlorella sorokiniana Biomass 7.5 271.0 1.61 [10]
Chlorophyta Chlorella sorokiniana Biomass 1 000 247.0 1.77 [10]
Chlorophyta Chlorella regularis Biomass 2.6 84.0 2.76 [64]
Chlorophyta Chlorella vulgaris Biomass 5.0 174.5 1.04 [72]
Chlorophyta Chlorella vulgaris Biomass 50.0 117.2 3.52 [46]
Chlorophyta Chlorella vulgaris Biomass 200.0 94.8 3.37 [46]
Chlorophyta Chlorella vulgaris Biomass 600.0 81.6 1.22 [46]
Chlorophyta Chlorella vulgaris Biomass 4 000.0 43.3 0.62 [73]
Chlorophyta Chlorella USTB-01 Biomass 5 000.0 42.4 0.67 [74]
Table 1 Comparison of the major fermentation performance indices among different microalgae in literatures
Fig.4 Bio-based products from microalgae under high-cell density heterotrophic cultivation
[1]   Dineshbabu G, Goswami G, Kumar R, et al. Microalgae-nutritious, sustainable aqua- and animal feed source. Journal of Functional Foods, 2019, 62:103545.
doi: 10.1016/j.jff.2019.103545
[2]   Levasseur W, Perré P, Pozzobon V. A review of high value-added molecules production by microalgae in light of the classification. Biotechnology Advances, 2020, 41:107545.
doi: 10.1016/j.biotechadv.2020.107545
[3]   张虎. 异养-光自养耦合模式提高尖状栅藻油脂产率及其机理研究. 北京: 中国科学院大学, 2019.
[3]   Zhang H. Coupled heterotrophic and photoautotrophic cultivation of Scenedesmus acuminatus for high lipid productivity and the related mechanism study. Beijing: University of Chinese Academy of Sciences, 2019.
[4]   Perez-Garcia O, Escalante F M E, de-Bashan L E, et al. Heterotrophic cultures of microalgae: metabolism and potential products. Water Research, 2011, 45(1):11-36.
doi: 10.1016/j.watres.2010.08.037 pmid: 20970155
[5]   Chen F. High cell density culture of microalgae in heterotrophic growth. Trends in Biotechnology, 1996, 14(11):421-426.
doi: 10.1016/0167-7799(96)10060-3
[6]   Pandey A, Lee D J, Chisti Y, et al. Biofuels from algae. Amsterdam: Elsevier Press, 2014: 111-142.
[7]   Jiang Y, Chen F. Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalge Crypthecodinium cohnii. Journal of the American Oil Chemists’ Society, 2000, 77(6):613-617.
doi: 10.1007/s11746-000-0099-0
[8]   Vazhappilly R, Chen F. Eicosapentaenoic acid and docosahexaenoic acid production potential of microalgae and their heterotrophic growth. Journal of the American Oil Chemists’ Society, 1998, 75(3):393-397.
doi: 10.1007/s11746-998-0057-0
[9]   Jia Z C, Liu Y, Daroch M, et al. Screening, growth medium optimisation and heterotrophic cultivation of microalgae for biodiesel production. Applied Biochemistry and Biotechnology, 2014, 173(7):1667-1679.
doi: 10.1007/s12010-014-0954-7
[10]   Jin H, Chuai W H, Li K P, et al. Ultrahigh-cell-density heterotrophic cultivation of the unicellular green alga Chlorella sorokiniana for biomass production. Biotechnology and Bioengineering, 2021, 118(10):4138-4151.
doi: 10.1002/bit.27890 pmid: 34264522
[11]   Jin H, Zhang H, Zhou Z W, et al. Ultrahigh-cell-density heterotrophic cultivation of the unicellular green microalga Scenedesmus acuminatus and application of the cells to photoautotrophic culture enhance biomass and lipid production. Biotechnology and Bioengineering, 2020, 117(1):96-108.
doi: 10.1002/bit.27190 pmid: 31612991
[12]   Yan D, Lu Y, Chen Y F, et al. Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Bioresource Technology, 2011, 102(11):6487-6493.
doi: 10.1016/j.biortech.2011.03.036
[13]   Ma M Y, Li Y H, Chen J P, et al. High-cell-density cultivation of the flagellate alga Poterioochromonas malhamensis for biomanufacturing the water-soluble β-1, 3-glucan with multiple biological activities. Bioresource Technology, 2021, 337:125447.
doi: 10.1016/j.biortech.2021.125447
[14]   de Swaaf M E, Sijtsma L, Pronk J T. High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnology and Bioengineering, 2003, 81(6):666-672.
doi: 10.1002/(ISSN)1097-0290
[15]   Wen Z Y, Chen F. Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnology Advances, 2003, 21(4):273-294.
doi: 10.1016/S0734-9750(03)00051-X
[16]   Ogbonna J C, Masui H, Tanaka H. Sequential heterotrophic/autotrophic cultivation - an efficient method of producing Chlorella biomass for health food and animal feed. Journal of Applied Phycology, 1997, 9(4):359-366.
doi: 10.1023/A:1007981930676
[17]   Chen G Q, Chen F. Growing phototrophic cells without light. Biotechnology Letters, 2006, 28(9):607-616.
doi: 10.1007/s10529-006-0025-4
[18]   Liu J, Huang J C, Fan K W, et al. Production potential of Chlorella zofingienesis as a feedstock for biodiesel. Bioresource Technology, 2010, 101(22):8658-8663.
doi: 10.1016/j.biortech.2010.05.082
[19]   Chen F, Johns M R. Substrate inhibition of Chlamydomonas reinhardtii by acetate in heterotrophic culture. Process Biochemistry, 1994, 29(4):245-252.
doi: 10.1016/0032-9592(94)80064-2
[20]   Shi X M, Zhang X W, Chen F. Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme and Microbial Technology, 2000, 27(3-5):312-318.
pmid: 10899558
[21]   Shen Y, Yuan W, Pei Z, et al. Heterotrophic culture of Chlorella protothecoides in various nitrogen sources for lipid production. Applied Biochemistry and Biotechnology, 2010, 160(6):1674-1684.
doi: 10.1007/s12010-009-8659-z pmid: 19424668
[22]   周文俊, 郑立, 韩笑天. 微藻异养化培养的研究进展. 海洋科学, 2012, 36(2):136-142.
[22]   Zhou W J, Zheng L, Han X T. Advancement of the researches for heterotrophic cultivation of microalgae. Marine Sciences, 2012, 36(2):136-142.
[23]   张丽君, 杨汝德, 肖恒. 小球藻的异养生长及培养条件优化. 广西植物, 2001, 21(4):353-357.
[23]   Zhang L J, Yang R D, Xiao H. The heterotrophic culture of Chlorella and optimization of growth condition. Guihaia, 2001, 21(4):353-357.
[24]   Chen F, Johns M R. Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. Journal of Applied Phycology, 1991, 3(3):203-209.
doi: 10.1007/BF00003578
[25]   Gao B Y, Wang F F, Huang L D, et al. Biomass, lipid accumulation kinetics, and the transcriptome of heterotrophic oleaginous microalga Tetradesmus bernardii under different carbon and nitrogen sources. Biotechnology for Biofuels, 2021, 14(1):4.
doi: 10.1186/s13068-020-01868-9
[26]   Wen Z Y, Chen F. Continuous cultivation of the diatom Nitzschia laevis for eicosapentaenoic acid production: physiological study and process optimization. Biotechnology Progress, 2002, 18(1):21-28.
doi: 10.1021/bp010125n
[27]   吴耀庭, 魏东, 陈俊辉. 微藻异养化高细胞密度培养技术及其应用. 中国食品添加剂, 2008(6):65-70.
[27]   Wu Y T, Wei D, Chen J H. The technology and application of high-cell density heterotrophic microalgae culture. China Food Additives, 2008(6):65-70.
[28]   张虎, 张桂艳, 温小斌, 等. pH对小球藻Chlorella sp.XQ-200419光合作用、生长和产油的影响. 水生生物学报, 2014, 38(6):1084-1091.
[28]   Zhang H, Zhang G Y, Wen X B, et al. Effects of pH on the photosynthesis, growth and lipid production of Chlorella sp.xq-200419. Acta Hydrobiologica Sinica, 2014, 38(6):1084-1091.
[29]   Shi X M, Liu H J, Zhang X W, et al. Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures. Process Biochemistry, 1999, 34(4):341-347.
doi: 10.1016/S0032-9592(98)00101-0
[30]   Xiong W, Li X F, Xiang J Y, et al. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Applied Microbiology and Biotechnology, 2008, 78(1):29-36.
pmid: 18064453
[31]   Komor E, Tanner W. The hexose-proton symport system of Chlorella vulgaris. European Journal of Biochemistry, 1974, 44(1):219-223.
pmid: 4854863
[32]   Komor E. Proton-coupled hexose transport in Chlorella vulgaris. FEBS Letters, 1973, 38(1):16-18.
pmid: 4772688
[33]   Hallmann A, Sumper M. The Chlorella hexose/H + symporter is a useful selectable marker and biochemical reagent when expressed in Volvox. PNAS, 1996, 93(2):669-673.
pmid: 8570613
[34]   Komor E, Schwab W G W, Tanner W. The effect of intracellular pH on the rate of hexose uptake in Chlorella. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1979, 555(3):524-530.
doi: 10.1016/0005-2736(79)90406-1
[35]   Ren H Y, Liu B F, Ma C, et al. A new lipid-rich microalga Scenedesmus sp. strain R-16 isolated using Nile red staining: effects of carbon and nitrogen sources and initial pH on the biomass and lipid production. Biotechnology for Biofuels, 2013, 6(1):143.
doi: 10.1186/1754-6834-6-143
[36]   Sakarika M, Kornaros M. Effect of pH on growth and lipid accumulation kinetics of the microalga Chlorella vulgaris grown heterotrophically under sulfur limitation. Bioresource Technology, 2016, 219:694-701.
doi: S0960-8524(16)31161-0 pmid: 27544920
[37]   Shi X M, Wu Z Y, Chen F. Kinetic modeling of lutein production by heterotrophic Chlorella at various pH and temperatures. Molecular Nutrition and Food Research, 2006, 50(8):763-768.
doi: 10.1002/(ISSN)1613-4133
[38]   Wu Z Y, Shi X M. Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network model. Letters in Applied Microbiology, 2007, 44(1):13-18.
doi: 10.1111/lam.2007.44.issue-1
[39]   尹建云, 孟海华, 张学松, 等. 酶解糖异养培养微藻发酵条件的优化及生产试验. 食品与发酵工业, 2006, 32(5):55-57, 61.
[39]   Yin J Y, Meng H H, Zhang X S, et al. Optimization on fermentation conditions and its production for heterotrophic culture of microalgae with enzymolyzed starch sugar. Food and Fermentation Industries, 2006, 32(5):55-57, 61.
[40]   Wen Z Y, Chen F. Application of statistically-based experimental designs for the optimization of eicosapentaenoic acid production by the diatom Nitzschia laevis. Biotechnology and Bioengineering, 2001, 75(2):159-169.
pmid: 11536138
[41]   Jiang Y, Chen F. Effects of salinity on cell growth and docosahexaenoic acid content of the heterotrophic marine microalga Crypthecodinium cohnii. Journal of Industrial Microbiology and Biotechnology, 1999, 23(6):508-513.
doi: 10.1038/sj.jim.2900759
[42]   Yoshida F, Yamane T, Nakamoto K I. Fed-batch hydrocarbon fermentation with colloidal emulsion feed. Biotechnology and Bioengineering, 1973, 15(2):257-270.
doi: 10.1002/(ISSN)1097-0290
[43]   Xu H, Miao X L, Wu Q Y. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology, 2006, 126(4):499-507.
doi: 10.1016/j.jbiotec.2006.05.002
[44]   Li X F, Xu H, Wu Q Y. Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnology and Bioengineering, 2007, 98(4):764-771.
doi: 10.1002/(ISSN)1097-0290
[45]   Bumbak F, Cook S, Zachleder V, et al. Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations. Applied Microbiology and Biotechnology, 2011, 91(1):31-46.
doi: 10.1007/s00253-011-3311-6
[46]   Doucha J, Lívanský K. Production of high-density Chlorella culture grown in fermenters. Journal of Applied Phycology, 2012, 24:35-43.
doi: 10.1007/s10811-010-9643-2
[47]   Schmidt R A, Wiebe M G, Eriksen N T. Heterotrophic high cell-density fed-batch cultures of the phycocyanin-producing red alga Galdieria sulphuraria. Biotechnology and Bioengineering, 2005, 90(1):77-84.
doi: 10.1002/(ISSN)1097-0290
[48]   Chen F, Johns M R. Heterotrophic growth of Chlamydomonas reinhardtii on acetate in chemostat culture. Process Biochemistry, 1996, 31(6):601-604.
doi: 10.1016/S0032-9592(96)00006-4
[49]   Molina Grima E, Sánchez Pérez J A, García Camacho F, et al. Effect of growth rate on the eicosapentaenoic acid and docosahexaenoic acid content of Isochrysis galbana in chemostat culture. Applied Microbiology and Biotechnology, 1994, 41(1):23-27.
doi: 10.1007/BF00166076
[50]   Wen X B, Geng Y H, Li Y G. Enhanced lipid production in Chlorella pyrenoidosa by continuous culture. Bioresource Technology, 2014, 161:297-303.
doi: 10.1016/j.biortech.2014.03.077
[51]   Ethier S, Woisard K, Vaughan D, et al. Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid. Bioresource Technology, 2011, 102(1):88-93.
doi: 10.1016/j.biortech.2010.05.021
[52]   Wen Z Y, Chen F. Perfusion culture of the diatom Nitzschia laevis for ultra-high yield of eicosapentaenoic acid. Process Biochemistry, 2002, 38(4):523-529.
doi: 10.1016/S0032-9592(02)00174-7
[53]   张虎, 刘镇洲, 陈家敏, 等. 利用海洋硅藻生产生物活性物质研究进展. 中国生物工程杂志, 2021, 41(4):81-90.
[53]   Zhang H, Liu Z Z, Chen J M, et al. Research progress on the production of bioactive compounds from marine diatoms. China Biotechnology, 2021, 41(4):81-90.
[54]   Cohen Z, Ratledge C. Single cell oils. 2nd ed. Pittsburgh: Academic Press and AOCS Press, 2010: 75-96.
[55]   Ambati R R, Phang S M, Ravi S, et al. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications- a review. Marine Drugs, 2014, 12(1):128-152.
doi: 10.3390/md12010128 pmid: 24402174
[56]   Wan M, Zhang Z, Wang J, et al. Sequential heterotrophy-dilution-photoinduction cultivation of Haematococcus pluvialis for efficient production of astaxanthin. Bioresource Technology, 2015, 198:557-563.
doi: 10.1016/j.biortech.2015.09.031
[57]   Sun Z, Zhang Y, Sun L P, et al. Light elicits astaxanthin biosynthesis and accumulation in the fermented ultrahigh-density Chlorella zofinginesis. Journal of Agricultural and Food Chemistry, 2019, 67(19):5579-5586.
doi: 10.1021/acs.jafc.9b01176
[58]   Fernández-Rojas B, Hernández-Juárez J, Pedraza-Chaverri J. Nutraceutical properties of phycocyanin. Journal of Functional Foods, 2014, 11:375-392.
doi: 10.1016/j.jff.2014.10.011
[59]   Wan M X, Wang Z Y, Zhang Z, et al. A novel paradigm for the high-efficient production of phycocyanin from Galdieria sulphuraria. Bioresource Technology, 2016, 218:272-278.
doi: 10.1016/j.biortech.2016.06.045
[60]   Zhu F M, Du B, Xu B J. A critical review on production and industrial applications of beta-glucans. Food Hydrocolloids, 2016, 52:275-288.
doi: 10.1016/j.foodhyd.2015.07.003
[61]   Lu X, Sun H, Zhao W Y, et al. A hetero-photoautotrophic two-stage cultivation process for production of fucoxanthin by the marine diatom Nitzschia laevis. Marine Drugs, 2018, 16(7):219.
doi: 10.3390/md16070219
[62]   Graverholt O S, Eriksen N T. Heterotrophic high-cell-density fed-batch and continuous-flow cultures of Galdieria sulphuraria and production of phycocyanin. Applied Microbiology and Biotechnology, 2007, 77(1):69-75.
pmid: 17786429
[63]   Jeon J Y, Kwon J S, Kang S T, et al. Optimization of culture media for large-scale lutein production by heterotrophic Chlorella vulgaris. Biotechnology Progress, 2014, 30(3):736-743.
doi: 10.1002/btpr.1889
[64]   Sansawa H, Endo H. Production of intracellular phytochemicals in Chlorella under heterotrophic conditions. Journal of Bioscience and Bioengineering, 2004, 98(6):437-444.
doi: 10.1016/S1389-1723(05)00309-9
[65]   钱峰慧. 小球藻的异养-光自养串联培养工艺优化及初步放大研究. 上海: 华东理工大学, 2007.
[65]   Qian F H. Study on the optimization and primary scale-up of Chlorella sequential heterotrophic/autotrophic cultivation technology for high-density and high-quality. Shanghai: East China University of Science and Technology, 2007.
[66]   Wan M X, Zhang Z, Wang R X, et al. High-yield cultivation of Botryococcus braunii for biomass and hydrocarbons. Biomass and Bioenergy, 2019, 131:105399.
doi: 10.1016/j.biombioe.2019.105399
[67]   de la Hoz Siegler H, McCaffrey W C, Burrell R E, et al. Optimization of microalgal productivity using an adaptive, non-linear model based strategy. Bioresource Technology, 2012, 104:537-546.
doi: 10.1016/j.biortech.2011.10.029 pmid: 22119433
[68]   Chen Y H, Walker T H. Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol. Biotechnology Letters, 2011, 33(10):1973-1983.
doi: 10.1007/s10529-011-0672-y
[69]   Xiao Y B, Lu Y, Dai J B, et al. Industrial fermentation of Auxenochlorella protothecoides for production of biodiesel and its application in vehicle diesel engines. Frontiers in Bioengineering and Biotechnology, 2015, 3:164.
[70]   Zheng Y B, Li T T, Yu X C, et al. High-density fed-batch culture of a thermotolerant microalga Chlorella sorokiniana for biofuel production. Applied Energy, 2013, 108:281-287.
doi: 10.1016/j.apenergy.2013.02.059
[71]   Zhang Z, Tan Y Y, Wang W L, et al. Efficient heterotrophic cultivation of Chlamydomonas reinhardtii. Journal of Applied Phycology, 2019, 31(3):1545-1554.
doi: 10.1007/s10811-018-1666-0
[72]   Barros A, Pereira H, Campos J, et al. Heterotrophy as a tool to overcome the long and costly autotrophic scale-up process for large scale production of microalgae. Scientific Reports, 2019, 9:13935.
doi: 10.1038/s41598-019-50206-z pmid: 31558732
[73]   梁世中, 朱明军, 孟海华, 等. 发酵罐葡萄糖流加大规模异养培养小球藻. 华南理工大学学报(自然科学版), 2000, 28(12):66-70.
[73]   Liang S Z, Zhu M J, Meng H H, et al. Heterotrophic mass cultures of Chlorella vulgaris with glucose feeding in fermenters. Journal of South China University of Technology (Natural Science Edition), 2000, 28(12):66-70.
[74]   景建克, 许倩倩, 刘硕, 等. 大规模异养发酵培养小球藻USTB-01研究. 现代化工, 2008, 28(12):67-70.
[74]   Jing J K, Xu Q Q, Liu S, et al. Heterotrophic mass culture of Chlorella USTB-01 in fermentor. Modern Chemical Industry, 2008, 28(12):67-70.
[75]   Wu M C, Qin H, Deng J Q, et al. A new pilot-scale fermentation mode enhances Euglena gracilis biomass and paramylon (β-1, 3-glucan) production. Journal of Cleaner Production, 2021, 321:128996.
doi: 10.1016/j.jclepro.2021.128996
[76]   Zhang H, Chen A L, Huang L D, et al. Transcriptomic analysis unravels the modulating mechanisms of the biomass and value-added bioproducts accumulation by light spectrum in Eustigmatos cf. polyphem (Eustigmatophyceae). Bioresource Technology, 2021, 338:125523.
doi: 10.1016/j.biortech.2021.125523
[77]   Wang Q K, Yu Z Y, Wei D. High-yield production of biomass, protein and pigments by mixotrophic Chlorella pyrenoidosa through the bioconversion of high ammonium in wastewater. Bioresource Technology, 2020, 313:123499.
doi: 10.1016/j.biortech.2020.123499
[78]   Wang Q K, Yu Z Y, Wei D, et al. Mixotrophic Chlorella pyrenoidosa as cell factory for ultrahigh-efficient removal of ammonium from catalyzer wastewater with valuable algal biomass coproduction through short-time acclimation. Bioresource Technology, 2021, 333:125151.
doi: 10.1016/j.biortech.2021.125151
[79]   Jaubert M, Bouly J P, Ribera d’Alcalà M, et al. Light sensing and responses in marine microalgae. Current Opinion in Plant Biology, 2017, 37:70-77.
doi: 10.1016/j.pbi.2017.03.005
[80]   Wei L, You W X, Gong Y H, et al. Transcriptomic and proteomic choreography in response to light quality variation reveals key adaption mechanisms in marine Nannochloropsis oceanica. Science of the Total Environment, 2020, 720:137667.
doi: 10.1016/j.scitotenv.2020.137667
[81]   Chai W S, Tan W G, Halimatul Munawaroh H S, et al. Multifaceted roles of microalgae in the application of wastewater biotreatment: a review. Environmental Pollution, 2021, 269:116236.
doi: 10.1016/j.envpol.2020.116236
[82]   Rempel A, Gutkoski J P, Nazari M T, et al. Current advances in microalgae-based bioremediation and other technologies for emerging contaminants treatment. Science of the Total Environment, 2021, 772:144918.
doi: 10.1016/j.scitotenv.2020.144918
[83]   Wang X, Zhang M M, Sun Z, et al. Sustainable lipid and lutein production from Chlorella mixotrophic fermentation by food waste hydrolysate. Journal of Hazardous Materials, 2020, 400:123258.
doi: 10.1016/j.jhazmat.2020.123258
[84]   Guldhe A, Ansari F A, Singh P, et al. Heterotrophic cultivation of microalgae using aquaculture wastewater: a biorefinery concept for biomass production and nutrient remediation. Ecological Engineering, 2017, 99:47-53.
doi: 10.1016/j.ecoleng.2016.11.013
[85]   Sproles A E, Fields F J, Smalley T N, et al. Recent advancements in the genetic engineering of microalgae. Algal Research, 2021, 53:102158.
doi: 10.1016/j.algal.2020.102158
[86]   Lee H, Shin W S, Kim Y U, et al. Enhancement of lipid production under heterotrophic conditions by overexpression of an endogenous bZIP transcription factor in Chlorella sp. HS2. Journal of Microbiology and Biotechnology, 2020, 30(10):1597-1606.
doi: 10.4014/jmb.2005.05048
[87]   Zaslavskaia L A, Lippmeier J C, Shih C, et al. Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science, 2001, 292(5524):2073-2075.
pmid: 11408656
[88]   Fischer H, Robl I, Sumper M, et al. Targeting and covalent modification of cell wall and membrane proteins heterologously expressed in the diatom Cylindrotheca fusiformis (bacillariophyceae). Journal of Phycology, 1999, 35(1):113-120.
doi: 10.1046/j.1529-8817.1999.3510113.x
[89]   Doebbe A, Rupprecht J, Beckmann J, et al. Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: impacts on biological H2 production. Journal of Biotechnology, 2007, 131(1):27-33.
pmid: 17624461
[1] ZHANG Zhen,LIU Xiao-jun,CHEN Xia,YAO Li-ping,ZHANG Rong-qing. Application and Prospect of Microalgae Biotechnology in Carbon Neutralization[J]. China Biotechnology, 2022, 42(1/2): 160-173.
[2] ZHANG Hu,LIU Zhen-zhou,CHEN Jia-min,GAO Bao-yan,ZHANG Cheng-wu. Research Progress on the Production of Bioactive Compounds from Marine Diatoms[J]. China Biotechnology, 2021, 41(4): 81-90.
[3] Zheng-san ZUO,Xiao-man SUN,Lu-jing REN,He HUANG. Improvement of Lipid Accumulation in Microalgae by Novel Cultivation Strategies[J]. China Biotechnology, 2018, 38(7): 102-109.
[4] WANG Cai-xia, ZHANG Teng-jiang, TENG Jie, FENG Xu-dong, LI Chun. The Efficient Carbon-oxygen Transformation and Regulation of Desert Microalgaes[J]. China Biotechnology, 2016, 36(10): 45-52.
[5] YANG Kai, ZHAN Jing-ming, GAO Fen-fang, WU Bao-li, SU Li-xia, ZHOU Wen-ming, XUE Xiang-ming, HAO Jie, ZHAO Yang. Research of Chlorella on the Production of Biodiesel[J]. China Biotechnology, 2015, 35(11): 99-104.
[6] LI Xie-kun, ZHOU Wei-zheng, GUO Ying, WU Hao, XU Jing-liang, YUAN Zhen-hong. Research Progress on Bioethanol Production with Microalgae as Feedstocks[J]. China Biotechnology, 2014, 34(5): 92-99.
[7] LI Yong-fu, MENG Fan-ping, LI Xiang-lei, MA Dong-dong. Effect of Illumination on Microalgae Cultured at High Cell Density in Photo-bioreactor[J]. China Biotechnology, 2013, 33(2): 103-110.
[8] HU Wen-jun, LUO Wei, LI Han-guang, GU Qiu-ya, YU Xiao-bin. Study on Screening and Identification of Oleaginous Microalgae and Its Oil-producing Charateristic[J]. China Biotechnology, 2012, 32(12): 66-72.
[9] LV Yan-xia, CHEN Zhao-an, LU Hong-bin, DENG Mai-cun, XUE Song, ZHANG Wei. Characterization of the Photoelectrode Based on the Immobilization of Microalgae[J]. China Biotechnology, 2012, 32(04): 96-102.
[10] CHEN Li-hong, SUN Li-qin, WANG Chang-hai. Antimicrobial Components from Microalgae and Its Screening Method[J]. China Biotechnology, 2011, 31(9): 109-116.
[11] TANG Xiao-hong, CHANG Ying, HUANG He, GAO Zhen, YIN Ji-long, JI Xiao-jun. The Advancement of CO2 Biological Trapping and Wastewater Ecological Recovery Based on Microalgae Cultivation.[J]. China Biotechnology, 2011, 31(9): 124-131.
[12] FENG Di-na, AI Jiang-ning, LIU Ya-nan, CHEN Zhao-an, XUE Song, ZHANG Wei. Effects of Nitrogen-containing Media on the Accumulation of Lipid and Carbohydrate in Marine Microalgae Isochrysis zhanjiangensis[J]. China Biotechnology, 2011, 31(10): 29-34.
[13] LI Tao, LI Ai-fen, SANG Min, WU Hong, YIN Shun-ji, ZHANG Cheng-wu. Screening Oleaginous Microalgae and Evaluation of the Oil-producing Charateristic[J]. China Biotechnology, 2011, 31(04): 98-105.
[14] ZHANG Ji, ZHENG Hong-Li, TANG Xiao-Gong, YIN Ji-Long, GAO Zhen, JI Xiao-Dun, LI Wen-Qi, HUANG He. Application of two-level fuzzy comprehensive evaluation in algae screening for biodiesel-producing microalgae[J]. China Biotechnology, 2010, 30(05): 69-75.
[15] JIANG Jin-Ju, MIAO Feng-Ping, FENG Da-Wei, QIN Song. Research Situation and Prospect of Microalgae Biodiesel[J]. China Biotechnology, 2010, 30(02): 134-137.