Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (1/2): 160-173    DOI: 10.13523/j.cb.2108011
Orginal Article     
Application and Prospect of Microalgae Biotechnology in Carbon Neutralization
ZHANG Zhen1,2,LIU Xiao-jun1,CHEN Xia1,YAO Li-ping1,ZHANG Rong-qing1,2,**()
1 Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314000, China
2 School of Life Sciences, Tsinghua University, Beijing 100084, China
Download: HTML   PDF(2190KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Carbon neutralization means that the carbon dioxide emissions produced are offset, leading to carbon dioxide “zero emissions” within a certain period, through afforestation, energy conservation, and emission reduction. Microalgae is generally a term for the microorganism that contains chlorophyll a and can carry out photosynthesis. It has the characteristic property of being carbon neutral. It can efficiently fix carbon dioxide through the CO2 concentration mechanism (CCM) by photosynthesis and fix organic carbon through heterotrophic assimilation. The organic carbon recycling is coupled with microalgae cultivation by using nutrients in wastewater from sewage sludge, agriculture, or food industry. The new alternative and clean energy originated from microalgae includes biodiesel, alcohol-based fuel, hydrogen, and hydrocarbons. The biomass can be converted into biofuels, biomaterials, and biofertilizers to replace fossil fuels, plastics, and fertilizers. Biotechnology applications through the full life cycle include species selection, multi-omics regulation, cultivation in photobioreactors, harvesting, extraction, and purification of microalgae biomass or products. Herein, the application and research status of microalgae biotechnology in the field of carbon neutralization are reviewed based on the carbon balance between intake and output. The value, significance, existing problems, and improvement direction of microalgae biotechnology are discussed. The low efficiency and high energy consumption of cultivation, harvesting, and extraction process are the main cause of carbon footprint. The screening of suitable microalgal strains, regulating of metabolic pathways, optimizing of culture conditions and bioreactors, and optimizing of downstream processing (such as harvesting, extraction, and purification) with the purpose of increasing the efficiency of carbon sequestration and utilization efficiency of light energy are expected to reduce costs and improve carbon footprint. More applications of microalgae in carbon neutral fields can be realized by targeting key nodes to improve the carbon footprint.



Key wordsCarbon neutral      Microalgae      Carbon dioxide      Fixation      Biofuels     
Received: 08 August 2021      Published: 03 March 2022
ZTFLH:  Q819  
Corresponding Authors: Rong-qing ZHANG     E-mail: rqzhang@mail.tsinghua.edu.cn
Cite this article:

ZHANG Zhen,LIU Xiao-jun,CHEN Xia,YAO Li-ping,ZHANG Rong-qing. Application and Prospect of Microalgae Biotechnology in Carbon Neutralization. China Biotechnology, 2022, 42(1/2): 160-173.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2108011     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I1/2/160

Fig.1 Schematic diagram of mechanism of carbon fixation and transformation in microalgae (1)Calvin cycle.G3P: Glyceraldehyde-3-phosphate; R5P: Ribulose-5-phosphate; 3PG: 3-Phosphoglycerate. (2)Fatty acids synthesis. Malonyl CoA: Malonyl coenzyme A; Malonyl ACP: Malonyl-acyl carrier protein; 3-Ketoacyl-ACP: 3-Ketoacyl-acyl carrier protein; 3-Hydroxyacyl-ACP: 3-Hydroxyacyl-acyl carrier protein; β-Hydroxyacyl-ACP: β-Hydroxyacyl-acyl carrier protein; Acyl-ACP: Acyl-acyl carrier protein.(3) Nitrogen assimilation. GLU: Glutamate; GLN: Glutamine. (4)TCA cycle.CIT: Citrate; ICIT: Isocitrate; SUCCoA: Succinyl-coenzyme A; 2-OG: Oxoglutarate; SUCC: Succinate; FUM: Fumarate; MAL: Malate; OAA: Oxaloacetic acid.(5)Organic carbon.G6P: Glucose-6-phosphate; F6P: Fructose-6-phosphate; FDP: Fructose-1, 6-diphosphate; G3P: Glyceraldehyde-3-phosphate; BPG: 1,3-Diphosphoglyceric acid; 2PG: 2-Phosphoglyceric acid; PEP: Phosphoenolpyruvate; PYR: Pyruvate; ACCoA: Acetyl coenzyme A; G1P: Glucose-1-phosphate; ADP-Glc: ADP-Glucose; LPA: Lysophosphatidic acid; PA: Phosphatidic acid; DAG: Diacylglycerol; TAG: Triacylglycerol; PC: Phosphatidylcholine; LPC: Lysophosphatidylcholine; DXOP: 1-Deoxy-D-xylulose-5-phosphate; MEP: 2-C-methyl-D-erythritol-4-phosphate; DMAPP: Dimethylallyl pyrophosphate; IPP: Isopentenyl pyrophosphate; FPP: Farnesyl pyrophosphate; GGPP: Geranylgeranyl pyrophosphate
藻种 培养模式 反应器 CO2体积
分数/%
CO2固定速率
/[g/(L·d)]
CO2固定
率/%
细胞产率
/[g/(L·d)]
参考
文献
Chlorella vulgaris 分批 7.5 L鼓泡柱式 4 4.50 3.41 [5]
Thermosynechococcus CL-1 (TCL-1) 连续 100 L 平板式 0.03 4.08 2.78 [6]
Chlorella vulgaris 分批 0.5 L 鼓泡柱式 2.5 3.51 1.86 [7]
Chlorella vulgaris P12 分批 0.1 L鼓泡柱式 7 2.22 1.33 [8]
Synechococcus elongates 半连续 中空纤维膜式 10 2.08 4.3 0.35 [9]
Chlorella vulgaris 1.8 L 管式 10 0.12 95.3 [10]
Scenedesmus obliquus 1.8 L 管式 10 0.27 94.7 [10]
Chlorella sp. MB-9 分批 50 L 柱式 20 86.3 0.32 [11]
Spirulina platensis 分批 0.5 L膜式 15 1.44 85.0 0.43 [12]
Chlorella vulgaris 分批 20 L 气升式 2 80.0 [13]
Arthrospira sp. 900 L列管 100 0.36 [14]
Tetraselmis sp. CTP4 半连续 1×105 L管式 60~75 65 [15]
Chlorella sp. 分批 40 L 袋式 38 57.3 [16]
Acutodesmus sp. 分批 2 L 套管式 30 0.19 0.10 [17]
Chlorella sp. MTF-7 分批 50 L 柱式 25 60 0.52 [17-18]
Table 1 CO2 fixation rate and ratio by microalgae
[1]   高风正, 葛保胜, 向文洲, 等. 生物技术研究引领中国微藻产业发展的六十年: 回顾与展望. 中国科学: 生命科学, 2021, 51(1):26-39.
[1]   Gao F Z, Ge B S, Xiang W Z, et al. Development of microalgal industries in the past 60 years due to biotechnological research in China: a review. Scientia Sinica (Vitae), 2021, 51(1):26-39.
[2]   曾存, 胡以怀, 李凯, 等. 微藻碳捕捉技术的研究与发展. 能源工程, 2019(5):63-68.
[2]   Zeng C, Hu Y H, Li K, et al. Research and development of microalgae carbon capture technology. Energy Engineering, 2019(5):63-68.
[3]   Li Y, Horsman M, Wu N, et al. Biofuels from microalgae. Biotechnology Progress, 2008, 24(4):815-820.
[4]   Ho S H, Chen C Y, Lee D J, et al. Perspectives on microalgal CO2-emission mitigation systems:A review. Biotechnology Advances, 2011, 29(2):189-198.
doi: 10.1016/j.biotechadv.2010.11.001
[5]   Guo Z, Phooi W B A, Lim Z J, et al. Control of CO2 input conditions during outdoor culture of Chlorella vulgaris in bubble column photobioreactors. Bioresource Technology, 2015, 186:238-245.
doi: 10.1016/j.biortech.2015.03.065
[6]   Su C M, Hsueh H T, Li T Y, et al. Effects of light availability on the biomass production, CO2 fixation, and bioethanol production potential of Thermosynechococcus CL-1. Bioresource Technology, 2013, 145:162-165.
doi: 10.1016/j.biortech.2013.02.092
[7]   Fu W Q, Gudmundsson S, Wichuk K, et al. Sugar-stimulated CO2 sequestration by the green microalga Chlorella vulgaris. Science of the Total Environment, 2019, 654:275-283.
doi: 10.1016/j.scitotenv.2018.11.120
[8]   Anjos M, Fernandes B D, Vicente A A, et al. Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresource Technology, 2013, 139:149-154.
doi: 10.1016/j.biortech.2013.04.032
[9]   Mortezaeikia V, Tavakoli O, Yegani R, et al. Cyanobacterial CO2 biofixation in batch and semi-continuous cultivation, using hydrophobic and hydrophilic hollow fiber membrane photobioreactors. Greenhouse Gases: Science and Technology, 2016, 6(2):218-231.
doi: 10.1002/ghg.2016.6.issue-2
[10]   Liu X N, Chen G Y, Tao Y, et al. Application of effluent from WWTP in cultivation of four microalgae for nutrients removal and lipid production under the supply of CO2. Renewable Energy, 2020, 149:708-715.
doi: 10.1016/j.renene.2019.12.092
[11]   Kao C Y, Chiu S Y, Huang T T, et al. Ability of a mutant strain of the microalga Chlorella sp. to capture carbon dioxide for biogas upgrading. Applied Energy, 2012, 93:176-183.
doi: 10.1016/j.apenergy.2011.12.082
[12]   Kumar A, Yuan X, Sahu A K, et al. A hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: a process engineering approach. Journal of Chemical Technology & Biotechnology, 2010, 85(3):387-394.
[13]   Sadeghizadeh A, Farhad dad F, Moghaddasi L, et al. CO2 capture from air by Chlorella vulgaris microalgae in an airlift photobioreactor. Bioresource Technology, 2017, 243:441-447.
doi: S0960-8524(17)31051-9 pmid: 28688327
[14]   Ye Q, Cheng J, Liu S Z, et al. Improving light distribution and light/dark cycle of 900 L tangential spiral-flow column photobioreactors to promote CO2 fixation with Arthrospira sp. cells. Science of the Total Environment, 2020, 720:137611.
doi: 10.1016/j.scitotenv.2020.137611
[15]   Pereira H, Páramo J, Silva J, et al. Scale-up and large-scale production of Tetraselmis sp. CTP4 (Chlorophyta) for CO2 mitigation: from an agar plate to 100-m3 industrial photobioreactors. Scientific Reports, 2018, 8(1):1-11.
[16]   Yan C H, Zhang Q H, Xue S Z, et al. A novel low-cost thin-film flat plate photobioreactor for microalgae cultivation. Biotechnology and Bioprocess Engineering, 2016, 21(1):103-109.
doi: 10.1007/s12257-015-0327-2
[17]   Swarnalatha G V, Hegde N S, Chauhan V S, et al. The effect of carbon dioxide rich environment on carbonic anhydrase activity, growth and metabolite production in indigenous freshwater microalgae. Algal Research, 2015, 9:151-159.
doi: 10.1016/j.algal.2015.02.014
[18]   Chiu S Y, Kao C Y, Huang T T, et al. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Bioresource Technology, 2011, 102(19):9135-9142.
doi: 10.1016/j.biortech.2011.06.091
[19]   程军, 杨宗波, 黄云, 等. 核诱变驯化微藻固定燃煤烟气中的CO2. 燃烧科学与技术, 2016, 22(3):193-197.
[19]   Chen J, Yang Z B, Huang Y, et al. Mutation of Nannochloropsis oculata for fixing CO2 from flue gas in a coal-fired power plant. Journal of Combustion Science and Technology, 2016, 22(3):193-197.
[20]   Li Y C, Chen Y F, Chen P, et al. Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology, 2011, 102(8):5138-5144.
doi: 10.1016/j.biortech.2011.01.091
[21]   Quijano G, Arcila J S, Buitrón G. Microalgal-bacterial aggregates: Applications and perspectives for wastewater treatment. Biotechnology Advances, 2017, 35(6):772-781.
doi: 10.1016/j.biotechadv.2017.07.003
[22]   Mujtaba G, Lee K. Treatment of real wastewater using co-culture of immobilized Chlorella vulgaris and suspended activated sludge. Water Research, 2017, 120:174-184.
doi: S0043-1354(17)30346-9 pmid: 28486168
[23]   Gupta S K, Ansari F A, Shriwastav A, et al. Dual role of Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass production for bio-fuels. Journal of Cleaner Production, 2016, 115:255-264.
doi: 10.1016/j.jclepro.2015.12.040
[24]   Kotoula D, Iliopoulou A, Irakleous-Palaiologou E, et al. Municipal wastewater treatment by combining in series microalgae Chlorella sorokiniana and macrophyte Lemna minor: Preliminary results. Journal of Cleaner Production, 2020, 271:122704.
doi: 10.1016/j.jclepro.2020.122704
[25]   程海翔. 一株栅藻的分离培养及其应用于养猪废水处理的潜力研究. 杭州: 浙江大学, 2013.
[25]   Cheng H X. Research on isolation and cultivation of a new microalga and the potential of its application for treating piggery wastewater. Hangzhou: Zhejiang University, 2013.
[26]   杨坤, 李静, 赵秀侠, 等. 栅藻和小球藻在4种养殖废水中的生长及净化效果对比研究. 环境工程学报, 2017, 11(7):4411-4418.
[26]   Yang K, Li J, Zhao X X, et al. A comparative study on growth and purification efficiency of Scenedesmus obliquus and Chlorella vulgaris in four kinds of breeding wastewater. Chinese Journal of Environmental Engineering, 2017, 11(7):4411-4418.
[27]   Guldhe A, Ansari F A, Singh P, et al. Heterotrophic cultivation of microalgae using aquaculture wastewater: a biorefinery concept for biomass production and nutrient remediation. Ecological Engineering, 2017, 99:47-53.
doi: 10.1016/j.ecoleng.2016.11.013
[28]   Wang Y, Ho S H, Cheng C L, et al. Nutrients and COD removal of swine wastewater with an isolated microalgal strain Neochloris aquatica CL-M1 accumulating high carbohydrate content used for biobutanol production. Bioresource Technology, 2017, 242:7-14.
doi: S0960-8524(17)30403-0 pmid: 28377203
[29]   张燕鹏. 食品工业废水培养钝顶螺旋藻过程中的污染物去除和藻蓝蛋白生产. 哈尔滨: 哈尔滨工业大学, 2020.
[29]   Zhang Y P. Pollutant removal and phycocyanin production in the cultivation of Spirulina platensis by food industry wastewater. Harbin: Harbin Institute of Technology, 2020.
[30]   Fernando J S R, Premaratne M, Dinalankara D M S D, et al. Cultivation of microalgae in palm oil mill effluent (POME) for astaxanthin production and simultaneous phycoremediation. Journal of Environmental Chemical Engineering, 2021, 9(4):105375.
doi: 10.1016/j.jece.2021.105375
[31]   Hu X J, Meneses Y E, Stratton J, et al. Integration of ozone with co-immobilized microalgae-activated sludge bacterial symbiosis for efficient on-site treatment of meat processing wastewater. Journal of Environmental Management, 2021, 285:112152.
doi: 10.1016/j.jenvman.2021.112152
[32]   Deshmane A B, Darandale V S, Nimbalkar D S, et al. Sugar mill effluent treatment using Spirulina for recycling of water, saving energy and producing protein. International Journal of Environmental Science and Technology, 2016, 13(2):749-754.
doi: 10.1007/s13762-015-0891-1
[33]   林海龙, 赵权宇, 黄和. 微藻处理废水的研究进展. 生物加工过程, 2019, 17(1):72-82.
[33]   Lin H L, Zhao Q Y, Huang H. Progress in wastewater treatment by microalgae. Chinese Journal of Bioprocess Engineering, 2019, 17(1):72-82.
[34]   黄英明, 王伟良, 李元广, 等. 微藻能源技术开发和产业化的发展思路与策略. 生物工程学报, 2010, 26(7):907-913.
[34]   Huang Y M, Wang W L, Li Y G, et al. Strategies for research and development and commercial production of microalgae bioenergy. Chinese Journal of Biotechnology, 2010, 26(7):907-913.
[35]   Brownstein A M. Algae as a fuel source. Renewable Motor Fuels. Amsterdam: Elsevier, 2015: 57-66.
[36]   Voloshin R A, Rodionova M V, Zharmukhamedov S K, et al. Review: Biofuel production from plant and algal biomass. International Journal of Hydrogen Energy, 2016, 41(39):17257-17273.
doi: 10.1016/j.ijhydene.2016.07.084
[37]   Rodionova M V, Poudyal R S, Tiwari I, et al. Biofuel production: Challenges and opportunities. International Journal of Hydrogen Energy, 2017, 42(12):8450-8461.
doi: 10.1016/j.ijhydene.2016.11.125
[38]   Goh B H H, Ong H C, Cheah M Y, et al. Sustainability of direct biodiesel synthesis from microalgae biomass: a critical review. Renewable and Sustainable Energy Reviews, 2019, 107:59-74.
doi: 10.1016/j.rser.2019.02.012
[39]   Ho S H, Ye X T, Hasunuma T, et al. Perspectives on engineering strategies for improving biofuel production from microalgae:A critical review. Biotechnology Advances, 2014, 32(8):1448-1459.
doi: 10.1016/j.biotechadv.2014.09.002
[40]   Batan L, Quinn J, Willson B, et al. Net energy and greenhouse gas emission evaluation of biodiesel derived from microalgae. Environmental Science & Technology, 2010, 44(20):7975-7980.
doi: 10.1021/es102052y
[41]   Halim R, Danquah M K, Webley P A. Extraction of oil from microalgae for biodiesel production: a review. Biotechnology Advances, 2012, 30(3):709-732.
doi: 10.1016/j.biotechadv.2012.01.001
[42]   Halim R, Gladman B, Danquah M K, et al. Oil extraction from microalgae for biodiesel production. Bioresource Technology, 2011, 102(1):178-185.
doi: 10.1016/j.biortech.2010.06.136
[43]   Faried M, Samer M, Abdelsalam E, et al. Biodiesel production from microalgae: Processes, technologies and recent advancements. Renewable and Sustainable Energy Reviews, 2017, 79:893-913.
doi: 10.1016/j.rser.2017.05.199
[44]   Majidian P, Tabatabaei M, Zeinolabedini M, et al. Metabolic engineering of microorganisms for biofuel production. Renewable and Sustainable Energy Reviews, 2018, 82:3863-3885.
doi: 10.1016/j.rser.2017.10.085
[45]   Miller R, Wu G X, Deshpande R R, et al. Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiology, 2010, 154(4):1737-1752.
doi: 10.1104/pp.110.165159
[46]   Trentacoste E M, Shrestha R P, Smith S R, et al. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. PNAS, 2013, 110(49):19748-19753.
doi: 10.1073/pnas.1309299110 pmid: 24248374
[47]   Lü J, Sheahan C, Fu P C. Metabolic engineering of algae for fourth generation biofuels production. Energy & Environmental Science, 2011, 4(7):2451-2466.
[48]   Shirvani T, Yan X Y, Inderwildi O R, et al. Life cycle energy and greenhouse gas analysis for algae-derived biodiesel. Energy & Environmental Science, 2011, 4(10):3773-3778.
[49]   Chen H H, Zhou D, Luo G, et al. Macroalgae for biofuels production: Progress and perspectives. Renewable and Sustainable Energy Reviews, 2015, 47:427-437.
doi: 10.1016/j.rser.2015.03.086
[50]   曹运齐, 刘云云, 胡南江, 等. 燃料乙醇的发展现状分析及前景展望. 生物技术通报, 2019, 35(4):163-169.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-1002
[50]   Cao Y Q, Liu Y Y, Hu N J, et al. Current status and prospects of fuel ethanol production. Biotechnology Bulletin, 2019, 35(4):163-169.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-1002
[51]   Daroch M, Geng S, Wang G Y. Recent advances in liquid biofuel production from algal feedstocks. Applied Energy, 2013, 102:1371-1381.
doi: 10.1016/j.apenergy.2012.07.031
[52]   Tanvir R U, Zhang J Y, Canter T, et al. Harnessing solar energy using phototrophic microorganisms: a sustainable pathway to bioenergy, biomaterials, and environmental solutions. Renewable and Sustainable Energy Reviews, 2021, 146:111181.
doi: 10.1016/j.rser.2021.111181
[53]   Lee S, Oh Y, Kim D, et al. Converting carbohydrates extracted from marine algae into ethanol using various ethanolic Escherichia coli strains. Applied Biochemistry and Biotechnology, 2011, 164(6):878-888.
doi: 10.1007/s12010-011-9181-7
[54]   Lam M K, Lee K T. Bioethanol production from microalgae. Handbook of Marine Microalgae. Amsterdam: Elsevier, 2015: 197-208.
[55]   Abomohra A E F, Elshobary M. Biodiesel, bioethanol, and biobutanol production from microalgae//Alam M A, Wang Z. Microalgae biotechnology for development of biofuel and wastewater treatment. Singapore; Springer Singapore. 2019: 293-321. DOI: 10.1007/978-981-13-2264-8_13.
doi: 10.1007/978-981-13-2264-8_13
[56]   廖莎, 王鹏翔, 师文静, 等. 莱茵衣藻黑暗厌氧发酵生产乙醇的研究. 现代化工, 2020, 40(4):188-192.
[56]   Liao S, Wang P X, Shi W J, et al. Ethanol production by dark anaerobic fermentation over Chlamydomonas reinhardtii. Modern Chemical Industry, 2020, 40(4):188-192.
[57]   Roussou S, Albergati A, Liang F Y, et al. Engineered cyanobacteria with additional overexpression of selected Calvin-Benson-Bassham enzymes show further increased ethanol production. Metabolic Engineering Communications, 2021, 12:e00161.
doi: 10.1016/j.mec.2021.e00161
[58]   廖莎, 姚长洪, 师文静, 等. 光合微生物产氢技术研究进展. 当代石油石化, 2020, 28(11):36-41.
[58]   Liao S, Yao C H, Shi W J, et al. Advancement of bio-hydrogen production from phototrophic microorganisms. Petroleum & Petrochemical Today, 2020, 28(11):36-41.
[59]   Weissman J C, Benemann J R. Hydrogen production by nitrogen-starved cultures of Anabaena cylindrica. Applied and Environmental Microbiology, 1977, 33(1):123-131.
doi: 10.1128/aem.33.1.123-131.1977 pmid: 402109
[60]   Liu J G, Bukatin V E, Tsygankov A A. Light energy conversion into H2 by Anabaena variabilis mutant PK84 dense cultures exposed to nitrogen limitations. International Journal of Hydrogen Energy, 2006, 31(11):1591-1596.
doi: 10.1016/j.ijhydene.2006.06.025
[61]   Brouers M, Hall D O. Ammonia and hydrogen production by immobilized cyanobacteria. Journal of Biotechnology, 1986, 3(5-6):307-321.
doi: 10.1016/0168-1656(86)90012-X
[62]   Shah V, Garg N, Madamwar D. Ultrastructure of the cyanobacterium Nostoc muscorum and exploitation of the culture for hydrogen production. Folia Microbiologica, 2003, 48(1):65-70.
pmid: 12744079
[63]   Baebprasert W, Lindblad P, Incharoensakdi A. Response of H2 production and Hox-hydrogenase activity to external factors in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. International Journal of Hydrogen Energy, 2010, 35(13):6611-6616.
doi: 10.1016/j.ijhydene.2010.04.047
[64]   Aoyama K, Uemura I, Miyake J, et al. Fermentative metabolism to produce hydrogen gas and organic compounds in a cyanobacterium, Spirulina platensis. Journal of Fermentation and Bioengineering, 1997, 83(1):17-20.
doi: 10.1016/S0922-338X(97)87320-5
[65]   McNeely K, Xu Y, Bennette N, et al. Redirecting reductant flux into hydrogen production via metabolic engineering of fermentative carbon metabolism in a cyanobacterium. Applied and Environmental Microbiology, 2010, 76(15):5032-5038.
doi: 10.1128/AEM.00862-10 pmid: 20543051
[66]   Miura Y, Yagi K, Shoga M, et al. Hydrogen production by a green alga, Chlamydomonas reinhardtii, in an alternating light/dark cycle. Biotechnology and Bioengineering, 1982, 24(7):1555-1563.
pmid: 18546456
[67]   Grechanik V, Naidov I, Bolshakov M, et al. Photoautotrophic hydrogen production by nitrogen-deprived Chlamydomonas reinhardtii cultures. International Journal of Hydrogen Energy, 2021, 46(5):3565-3575.
doi: 10.1016/j.ijhydene.2020.10.215
[68]   Klein U, Betz A. Fermentative metabolism of hydrogen-evolving Chlamydomonas moewusii. Plant Physiology, 1978, 61(6):953-956.
doi: 10.1104/pp.61.6.953 pmid: 16660433
[69]   Touloupakis E, Faraloni C, Silva Benavides A M, et al. Sustained photobiological hydrogen production by Chlorella vulgaris without nutrient starvation. International Journal of Hydrogen Energy, 2021, 46(5):3684-3694.
doi: 10.1016/j.ijhydene.2020.10.257
[70]   Li L, Zhang L T, Liu J G. Proteomic analysis of hydrogen production in Chlorella pyrenoidosa under nitrogen deprivation. Algal Research, 2021, 53:102143.
doi: 10.1016/j.algal.2020.102143
[71]   Papazi A, Gjindali A I, Kastanaki E, et al. Potassium deficiency, a “smart” cellular switch for sustained high yield hydrogen production by the green alga Scenedesmus obliquus. International Journal of Hydrogen Energy, 2014, 39(34):19452-19464.
doi: 10.1016/j.ijhydene.2014.09.096
[72]   Márquez-Reyes L A, Sánchez-Saavedra M D P, Valdez-Vazquez I. Improvement of hydrogen production by reduction of the photosynthetic oxygen in microalgae cultures of Chlamydomonas gloeopara and Scenedesmus obliquus. International Journal of Hydrogen Energy, 2015, 40(23):7291-7300.
doi: 10.1016/j.ijhydene.2015.04.060
[73]   Maswanna T, Phunpruch S, Lindblad P, et al. Enhanced hydrogen production by optimization of immobilized cells of the green alga Tetraspora sp. CU2551 grown under anaerobic condition. Biomass and Bioenergy, 2018, 111:88-95.
doi: 10.1016/j.biombioe.2018.01.005
[74]   Schnackenberg J, Ikemoto H, Miyachi S. Photosynthesis and hydrogen evolution under stress conditions in a CO2-tolerant marine green alga, Chlorococcum littorale. Journal of Photochemistry and Photobiology B: Biology, 1996, 34(1):59-62.
doi: 10.1016/1011-1344(95)07270-5
[75]   Cao X P, Wu X D, Ji C F, et al. Comparative transcriptional study on the hydrogen evolution of marine microalga Tetraselmis subcordiformis. International Journal of Hydrogen Energy, 2014, 39(32):18235-18246.
doi: 10.1016/j.ijhydene.2014.09.037
[76]   Ghirardi M L, Posewitz M C, Maness P C, et al. Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annual Review of Plant Biology, 2007, 58:71-91.
pmid: 17150028
[77]   Melis A. Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency. Plant Science, 2009, 177(4):272-280.
doi: 10.1016/j.plantsci.2009.06.005
[78]   Faraloni C, Torzillo G. Genetic optimization for increasing hydrogen production in microalgae//Meyers R A. Encyclopedia of sustainability science and technology. New York:Springer New York, 2017: 1-18. DOI: 10.1007/978-1-4939-2493-6_950-1.
doi: 10.1007/978-1-4939-2493-6_950-1
[79]   Brentner L B, Peccia J, Zimmerman J B. Challenges in developing biohydrogen as a sustainable energy source: implications for a research agenda. Environmental Science & Technology, 2010, 44(7):2243-2254.
doi: 10.1021/es9030613
[80]   Melis A, Zhang L P, Forestier M, et al. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiology, 2000, 122(1):127-136.
pmid: 10631256
[81]   Troshina O, Serebryakova L, Sheremetieva M, et al. Production of H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 during fermentation. International Journal of Hydrogen Energy, 2002, 27(11-12):1283-1289.
doi: 10.1016/S0360-3199(02)00103-9
[82]   Wan M X, Zhang Z, Wang R X, et al. High-yield cultivation of Botryococcus braunii for biomass and hydrocarbons. Biomass and Bioenergy, 2019, 131:105399.
doi: 10.1016/j.biombioe.2019.105399
[83]   Mehta P, Jackson B A, Nwoba E G, et al. Continuous non-destructive hydrocarbon extraction from Botryococcus braunii BOT-22. Algal Research, 2019, 41:101537.
doi: 10.1016/j.algal.2019.101537
[84]   Teco-Bravo J I, Barahona-Pérez L F, Peraza-Echeverria S, et al. Lipid profiles of acid-tolerant mutants of the green microalga Chlorella saccharophila reveal hydrocarbons and high-value lipids with potential industrial applications. Bioresource Technology Reports, 2021, 13:100636.
doi: 10.1016/j.biteb.2021.100636
[85]   Murray J, Thomson A. Hydrocarbon production in Anacystis montana and Botryococcus braunii. Phytochemistry, 1977, 16(4):465-468.
doi: 10.1016/S0031-9422(00)94329-2
[86]   Han J, McCarthy E D, Calvin M, et al. Hydrocarbon constituents of the blue-green algae Nostoc muscorum, Anacystis nidulans, Phormidium luridium and Chlorogloea fritschii. Journal of the Chemical Society C: Organic, 1968, 2785-2791.
[87]   Brown A C, Knights B A, Conway E. Hydrocarbon content and its relationship to physiological state in the green alga Botryococcus braunii. Phytochemistry, 1969, 8(3):543-547.
doi: 10.1016/S0031-9422(00)85397-2
[88]   Largeau C, Casadevall E, Berkaloff C, et al. Sites of accumulation and composition of hydrocarbons in Botryococcus braunii. Phytochemistry, 1980, 19(6):1043-1051.
doi: 10.1016/0031-9422(80)83054-8
[89]   Casadevall E, Dif D, Largeau C, et al. Studies on batch and continuous cultures of Botryococcus braunii: Hydrocarbon production in relation to physiological state, cell ultrastructure, and phosphate nutrition. Biotechnology and Bioengineering, 1985, 27(3):286-295.
pmid: 18553671
[90]   Rao A R, Dayananda C, Sarada R, et al. Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresource Technology, 2007, 98(3):560-564.
doi: 10.1016/j.biortech.2006.02.007
[91]   Metzger P, Largeau C. Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Applied Microbiology and Biotechnology, 2005, 66(5):486-496.
pmid: 15630516
[92]   Sawayama S, Minowa T, Yokoyama S Y. Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae. Biomass and Bioenergy, 1999, 17(1):33-39.
doi: 10.1016/S0961-9534(99)00019-7
[93]   Okada S, Murakami M, Yamaguchi K. Hydrocarbon production by the yayoi, a new strain of the green microalga Botryococcus braunii. Applied Biochemistry and Biotechnology, 1997, 67(1-2):79-86.
doi: 10.1007/BF02787843
[94]   Jackson B A, Bahri P A, Moheimani N R. Repetitive non-destructive milking of hydrocarbons from Botryococcus braunii. Renewable and Sustainable Energy Reviews, 2017, 79:1229-1240.
doi: 10.1016/j.rser.2017.05.130
[95]   Silambarasan S, Logeswari P, Sivaramakrishnan R, et al. Removal of nutrients from domestic wastewater by microalgae coupled to lipid augmentation for biodiesel production and influence of deoiled algal biomass as biofertilizer for Solanum lycopersicum cultivation. Chemosphere, 2021, 268:129323.
doi: 10.1016/j.chemosphere.2020.129323
[96]   Sharma G K, Khan S A, Shrivastava M, et al. Circular economy fertilization: Phycoremediated algal biomass as biofertilizers for sustainable crop production. Journal of Environmental Management, 2021, 287:112295.
doi: 10.1016/j.jenvman.2021.112295
[97]   Nayak M, Swain D K, Sen R. Strategic valorization of de-oiled microalgal biomass waste as biofertilizer for sustainable and improved agriculture of rice (Oryza sativa L.) crop. Science of the Total Environment, 2019, 682:475-484.
doi: 10.1016/j.scitotenv.2019.05.123
[98]   Lorentz J F, Calijuri M L, Assemany P P, et al. Microalgal biomass as a biofertilizer for pasture cultivation: Plant productivity and chemical composition. Journal of Cleaner Production, 2020, 276:124130.
doi: 10.1016/j.jclepro.2020.124130
[99]   Chittora D, Meena M, Barupal T, et al. Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochemistry and Biophysics Reports, 2020, 22:100737.
doi: 10.1016/j.bbrep.2020.100737 pmid: 32083191
[100]   Laurens L M L, Markham J, Templeton D W, et al. Development of algae biorefinery concepts for biofuels and bioproducts; a perspective on process-compatible products and their impact on cost-reduction. Energy & Environmental Science, 2017, 10(8):1716-1738.
[101]   Zhang C F, Show P L, Ho S H. Progress and perspective on algal plastics: A critical review. Bioresource Technology, 2019, 289:121700.
doi: 10.1016/j.biortech.2019.121700
[102]   Khetkorn W, Incharoensakdi A, Lindblad P, et al. Enhancement of poly-3-hydroxybutyrate production in Synechocystis sp. PCC 6803 by overexpression of its native biosynthetic genes. Bioresource Technology, 2016, 214:761-768.
doi: 10.1016/j.biortech.2016.05.014
[103]   Kamravamanesh D, Kovacs T, Pflügl S, et al. Increased poly-β-hydroxybutyrate production from carbon dioxide in randomly mutated cells of cyanobacterial strain Synechocystis sp. PCC 6714: Mutant generation and characterization. Bioresource Technology, 2018, 266:34-44.
doi: S0960-8524(18)30836-8 pmid: 29957289
[104]   Remmers I M, Wijffels R H, Barbosa M J, et al. Can we approach theoretical lipid yields in microalgae? Trends in Biotechnology, 2018, 36(3):265-276.
doi: S0167-7799(17)30284-6 pmid: 29395347
[105]   Ghosh A, Khanra S, Mondal M, et al. Progress toward isolation of strains and genetically engineered strains of microalgae for production of biofuel and other value added chemicals: A review. Energy Conversion and Management, 2016, 113:104-118.
doi: 10.1016/j.enconman.2016.01.050
[106]   Khan S, Fu P C. Biotechnological perspectives on algae: a viable option for next generation biofuels. Current Opinion in Biotechnology, 2020, 62:146-152.
doi: 10.1016/j.copbio.2019.09.020
[107]   Shin W S, Lee B, Jeong B R, et al. Truncated light-harvesting chlorophyll antenna size in Chlorella vulgaris improves biomass productivity. Journal of Applied Phycology, 2016, 28(6):3193-3202.
doi: 10.1007/s10811-016-0874-8
[108]   Georgianna D R, Mayfield S P. Exploiting diversity and synthetic biology for the production of algal biofuels. Nature, 2012, 488(7411):329-335.
doi: 10.1038/nature11479
[109]   Rashid N, Nayak M, Suh W I, et al. Efficient microalgae removal from aqueous medium through auto-flocculation: investigating growth-dependent role of organic matter. Environmental Science and Pollution Research, 2019, 26(26):27396-27406.
doi: 10.1007/s11356-019-05904-6
[110]   Wang Y, Yang Y, Ma F, et al. Optimization of Chlorella vulgaris and bioflocculant-producing bacteria co-culture: enhancing microalgae harvesting and lipid content. Letters in Applied Microbiology, 2015, 60(5):497-503.
doi: 10.1111/lam.12403 pmid: 25693426
[1] Hu ZHANG,Liang ZHAO,Yi CHEN,Bao-yan GAO,Qiang HU,Cheng-wu ZHANG. Research Progress and Future Direction on High-cell-density Heterotrophic Cultivation of Microalgae[J]. China Biotechnology, 2022, 42(3): 110-123.
[2] FAN Yan,YANG Miao,XUE Song. High-throughput Screening of Benzoate Decarboxylase for High-efficiency Fixation of CO2 Based on Spectroscopy-image Grayscale Method[J]. China Biotechnology, 2021, 41(11): 55-63.
[3] Zheng-san ZUO,Xiao-man SUN,Lu-jing REN,He HUANG. Improvement of Lipid Accumulation in Microalgae by Novel Cultivation Strategies[J]. China Biotechnology, 2018, 38(7): 102-109.
[4] JU Xiao-zhi, YUAN Qian-qian, MA Chun-ling, XIAO Dong-guang, MA Hong-wu. In vitro Construction of the Threonine Cycle Pathway for Carbon Fixation[J]. China Biotechnology, 2017, 37(6): 56-62.
[5] WANG Cai-xia, ZHANG Teng-jiang, TENG Jie, FENG Xu-dong, LI Chun. The Efficient Carbon-oxygen Transformation and Regulation of Desert Microalgaes[J]. China Biotechnology, 2016, 36(10): 45-52.
[6] YANG Kai, ZHAN Jing-ming, GAO Fen-fang, WU Bao-li, SU Li-xia, ZHOU Wen-ming, XUE Xiang-ming, HAO Jie, ZHAO Yang. Research of Chlorella on the Production of Biodiesel[J]. China Biotechnology, 2015, 35(11): 99-104.
[7] LI Xie-kun, ZHOU Wei-zheng, GUO Ying, WU Hao, XU Jing-liang, YUAN Zhen-hong. Research Progress on Bioethanol Production with Microalgae as Feedstocks[J]. China Biotechnology, 2014, 34(5): 92-99.
[8] LI Yong-fu, MENG Fan-ping, LI Xiang-lei, MA Dong-dong. Effect of Illumination on Microalgae Cultured at High Cell Density in Photo-bioreactor[J]. China Biotechnology, 2013, 33(2): 103-110.
[9] HU Wen-jun, LUO Wei, LI Han-guang, GU Qiu-ya, YU Xiao-bin. Study on Screening and Identification of Oleaginous Microalgae and Its Oil-producing Charateristic[J]. China Biotechnology, 2012, 32(12): 66-72.
[10] LV Yan-xia, CHEN Zhao-an, LU Hong-bin, DENG Mai-cun, XUE Song, ZHANG Wei. Characterization of the Photoelectrode Based on the Immobilization of Microalgae[J]. China Biotechnology, 2012, 32(04): 96-102.
[11] CHEN Li-hong, SUN Li-qin, WANG Chang-hai. Antimicrobial Components from Microalgae and Its Screening Method[J]. China Biotechnology, 2011, 31(9): 109-116.
[12] TANG Xiao-hong, CHANG Ying, HUANG He, GAO Zhen, YIN Ji-long, JI Xiao-jun. The Advancement of CO2 Biological Trapping and Wastewater Ecological Recovery Based on Microalgae Cultivation.[J]. China Biotechnology, 2011, 31(9): 124-131.
[13] FENG Di-na, AI Jiang-ning, LIU Ya-nan, CHEN Zhao-an, XUE Song, ZHANG Wei. Effects of Nitrogen-containing Media on the Accumulation of Lipid and Carbohydrate in Marine Microalgae Isochrysis zhanjiangensis[J]. China Biotechnology, 2011, 31(10): 29-34.
[14] LI Tao, LI Ai-fen, SANG Min, WU Hong, YIN Shun-ji, ZHANG Cheng-wu. Screening Oleaginous Microalgae and Evaluation of the Oil-producing Charateristic[J]. China Biotechnology, 2011, 31(04): 98-105.
[15] ZHANG Ji, ZHENG Hong-Li, TANG Xiao-Gong, YIN Ji-Long, GAO Zhen, JI Xiao-Dun, LI Wen-Qi, HUANG He. Application of two-level fuzzy comprehensive evaluation in algae screening for biodiesel-producing microalgae[J]. China Biotechnology, 2010, 30(05): 69-75.