Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (4): 34-41    DOI: 10.13523/j.cb.1910009
    
Accurate Detection of Streptococcus pneumoniae by Using Ribosomal Protein L7 / L12 as Molecular Marker
WANG Meng1,SONG Hui-ru1,CHENG Yu-jie1,WANG Yi1,2,3,YANG Bo1,2,3,HU Zheng1,2,3,**()
1 School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
2 Key Laboratory of Fermentation Engineering (Hubei University of Technology), Ministry of Education, Wuhan 430068, China
3 Hubei Collaborative Innovation Center for Industrial Fermentation, Wuhan 430068, China
Download: HTML   PDF(1108KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: A rapid colloidal gold immunochromatography assay (GICA) for the detection of Streptococcus pneumoniae was explored by using the ribosomal protein L7/L12 as detection marker. Method: The gene sequence of ribosomal protein L7/L12 was analyzed, the prokaryotic expression vector was constructed, the recombinant protein was expressed and purified, and the monoclonal antibody was prepared by immunizing BALB/c mice; The affinity of antigens and antibodies was detected by a labelless molecular interaction instrument based on BLI technology; The colloidal gold immunochromatographic test strip was developed based on the principle of double antibody sandwich, and its specificity, sensitivity and stability were evaluated. Result: Two hybridoma cell strains that can efficiently secrete anti-monoclonal antibody were acquired by means of screening. Purified monoclonal antibodies all had high affinity and no competition with antigen. Pairing and detection were made on colloidal gold immunochromatography platform. The minimum detection limit of the test strips was 1.0×105 CFU/ml; It had a specific reaction with Streptococcus pneumoniae, but did not cross-react with other 9 kinds of common respiratory pathogens such as Haemophilus influenzae and Moraxella catarrhalis; Test strips were kept at 25°C for 12 months and still had good repeatability and stability. Conclusions: RP-L7/L12 can be used as a detection marker for Streptococcus pneumonia. The colloidal gold immunochromatographic test strips prepared by its monoclonal antibody can be used for rapid detection of streptococcus pneumoniae.



Key wordsStreptococcus pneumoniae      Ribosomal protein L7/L12      Monoclonal antibody      Colloidal gold immunochromatography     
Received: 10 October 2019      Published: 18 May 2020
ZTFLH:  Q819  
Corresponding Authors: Zheng HU     E-mail: zhenghu@mail.hbut.edu.cn
Cite this article:

WANG Meng,SONG Hui-ru,CHENG Yu-jie,WANG Yi,YANG Bo,HU Zheng. Accurate Detection of Streptococcus pneumoniae by Using Ribosomal Protein L7 / L12 as Molecular Marker. China Biotechnology, 2020, 40(4): 34-41.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.1910009     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I4/34

Primer sequences Restriction enzyme cutting site
F 5'-TTAGGATCCATGGCATTGAACATTGAAAA-3' BamHI
R 5'-ATACTCGAGTTTAAGAGTAACTGAAGCTC-3' XhoI
Table 1 Primer sequence of PCR amplified
Fig.1 Expression and purification of Sp-RP-L7/L12 M: protein marker; 1: pET-21a; 2: Uninduced negative control; 3: Total protein after induction of expression; 4: supernatant collected from ultrasound disrupted E. coli.; 5: precipitation collected from ultrasound disrupted E. coli.; 6: penetrating fluid; 7: eluent with 20 mmol/L imidazole; 8: eluent with 40 mmol/L imidazole; 9: eluent with 100 mmol/L imidazole; 10: eluent with 150 mmol/L imidazole
Fig.2 Identification and analysis of antibody purification by SDS-PAGE M: protein marker; 1: Sp-1#; 2: Sp-2#
Fig.3 Determination of antibody titer by indirect ELISA (a) Sp-1# antibody titer (b) Sp-2# antibody titer.
Subtype Lp-1 Lp-2
H-chain IgG1 1.043 2 1.429
IgG2a 0.249 9 0.214 5
IgG2b 0.145 2 0.204 8
IgG3 0.068 2 0.063 2
IgA 0.13 0.088 4
IgM 0.097 4 0.091 5
L-chain Kappa 0.500 3 0.616
Lambda 0.086 4 0.064 7
Table 2 Subtype identification of monoclonal antibodies
Fig.4 Identification of monoclonal antibodies SP-1# and SP-2# by Western blotting M: protein marker;1&3: recipitation of S. pneumoniae;2&4: recombinant protein RP-L7/L12
Fig.5 Detection of antibody affinity by molecular interaction instrument (a) Sp-1# binding and dissociation curves (b) Sp-2# binding and dissociation curves
Conc. (nM) Response KD (M) kon(1/Ms) kdis(1/s) Full R2
SP-1# 1 000 4.876 1 9.05E-09 2.64E+04 2.39E-04 0.997 1
500 3.897 7 8.86E-09 3.25E+04 2.88E-04 0.997 9
250 2.819 6 8.12E-09 4.38E+04 3.56E-04 0.998 3
125 2.442 8 9.29E-09 4.68E+04 4.35E-04 0.993 2
62.5 1.546 5 5.91E-09 6.92E+04 4.09E-04 0.998 1
SP-2# 1 000 3.887 7 3.67E-09 5.96E+04 2.19E-04 0.995 1
500 2.806 0 5.36E-09 7.89E+04 4.23E-04 0.992 8
250 1.900 2 6.51E-09 8.89E+04 5.79E-04 0.992 5
125 1.410 1 7.72E-09 4.05E+04 3.13E-04 0.993 1
62.5 0.698 3 4.57E-09 9.36E+04 4.28E-04 0.991 2
Table 3 Data results of Biofilm Interference Technology (BLI) test
Fig.6 Verification of Sp antibody recognizing different epitopes by in-tandem assay
Fig.7 Specificity test of S. pneumoniae colloidal gold immunochromatography strip
Fig.8 Sensitive test of S. pneumoniae colloidal gold immunochromatography strip 1-6: represents the concentration of S. pneumoniae: 1.0×109CFU/ml, 1.0×108CFU/ml, 1.0×107CFU/ml, 1.0×106CFU/ml, 1.0×105CFU/ml, 1.0×104CFU/ml; 7: negative control
[1]   Feldman C, Anderson R . Bacteraemic pneumococcal pneumonia: current therapeutic options. Drugs, 2011,71(2):131-153.
doi: 10.2165/11585310-000000000-00000
[2]   Varon E, Mainardi J L, Gutmann L . Streptococcus pneumoniae: still a major pathogen. Clinical Microbiology and Infection, 2010,16(5):401-402.
doi: 10.1111/j.1469-0691.2010.03190.x pmid: 20394638
[3]   Tadashi I, Toru H, Machiko A , et al. A 3-year prospective study of a urinary antigen-detection test for Streptococcus pneumoniae in community-acquired pneumonia: utility and clinical impact on the reported etiology. Journal of Infection and Chemotherapy, 2004,10(6):359-363.
doi: 10.1007/s10156-004-0351-1
[4]   Saito A, Kohno S, Matsushima T , et al. Prospective multicenter study of the causative organisms of community-acquired pneumonia in adults in Japan. Journal of Infection and Chemotherapy, 2006,12(2):63-69.
doi: 10.1007/s10156-005-0425-8
[5]   McFarland M, Szasz T P, Zhou J Y , et al. Colonization with 19F and other pneumococcal conjugate vaccine serotypes in children in St. Louis, Missouri, USA. Vaccine, 2017,35(34):4389-4395.
doi: 10.1016/j.vaccine.2017.06.047 pmid: 28687405
[6]   Ishiguro T, Takayanagi N, Yamaguchi S , et al. Etiology and factors contributing to the severity and mortality of community-acquired pneumonia. Internal Medicine, 2013,52(3):317-324.
doi: 10.2169/internalmedicine.52.8830
[7]   Wubbel L, Muniz L, Ahmed A , et al. Etiology and treatment of community-acquired pneumonia in ambulatory children. The Pediatric Infectious Disease Journal, 1999,18(2):98-104.
doi: 10.1097/00006454-199902000-00004 pmid: 10048679
[8]   Reller L B, Weinstein M P, Werno A M , et al. Medical microbiology: laboratory diagnosis of invasive pneumococcal disease. Clinical Infectious Diseases, 2008,46(6):926-932.
doi: 10.1086/528798 pmid: 18260752
[9]   Musher D M . Editorial Commentary: Quantitative Molecular Approach to Diagnosing Pneumonia. Clinical Infectious Diseases, 2016,62(7):824-825.
doi: 10.1093/cid/civ1216 pmid: 26747824
[10]   Bartlett J G . Diagnostic tests for agents of community-acquired pneumonia. Clinical Infectious Diseases, 2011,52(4):296-304.
[11]   Marcos M A, Jiménez de Anta M T, De la Bellacasa J P , et al. Rapid urinary antigen test for diagnosis of pneumococcal community-acquired pneumonia in adults. The European Respiratory Journal, 2003,21(2):209-214.
doi: 10.1183/09031936.03.00058802 pmid: 12608431
[12]   Gudkov A T . The L7/L12 ribosomal domain of the ribosome: structural and functional studies. FEBS Letters, 1997,407(3):253-256.
doi: 10.1016/s0014-5793(97)00361-x pmid: 9175862
[13]   Howe J G, Hershey J W . Initiation factor and ribosome levels are coordinately controlled in Escherichia coli growing at different rates. Journal of Biological Chemistry, 1983,258(3):1954-1959.
pmid: 6337147
[14]   Kolberg J, Hoiby E A, Lopez R , et al. Monoclonal antibodies against Streptococcus pneumoniae detect epitopes on eubacterial ribosomal proteins L7/L12 and on streptococcal elongation factor Ts. Microbiology, 1997,143(1):55-61.
doi: 10.1099/00221287-143-1-55 pmid: 9025278
[15]   Jomaa M, Kyd J M, Cripps A W . Mucosal immunisation with novel Streptococcus pneumoniae protein antigens enhances bacterial clearance in an acute mouse lung infection model. Fems Immunology and Medical Microbiology, 2005,44(1):59-67.
doi: 10.1016/j.femsim.2004.12.001 pmid: 15780579
[16]   王辉, 杨波, 赵可胜 , 等. 卡他莫拉菌UspA1蛋白多克隆抗体的制备及鉴定. 生物工程学报, 2018,34(1):102-109.
doi: 10.13345/j.cjb.170095 pmid: 29380575
[16]   Wang H, Yang B, Zhao K S , et al. Preparation and identification of polyclonal antibodies against Moraxella catarrhalis UspA1. Chinese Journal of Biotechnology, 2018,34(1):102-109.
doi: 10.13345/j.cjb.170095 pmid: 29380575
[17]   陶冶, 郝惠文, 李杰 , 等. 流感嗜血杆菌快速检测胶体金试纸的研制. 生物工程学报, 2019,35(5):901-909.
doi: 10.13345/j.cjb.180428 pmid: 31223008
[17]   Tao Y, Hao H W, Li J , et al. Colloidal gold immunochromatographic strip for rapid detection of Haemophilus influenzae. Chinese Journal of Biotechnology, 2019,35(5):901-909.
doi: 10.13345/j.cjb.180428 pmid: 31223008
[18]   Estep P, Reid F, Nauman C , et al. High throughput solution-based measurement of antibody-antigen affinity and epitope binning. Mabs, 2013,5(2):270-278.
doi: 10.4161/mabs.23049
[19]   Samarawickrama A, Alexander S, Ison C . A laboratory-based evaluation of the BioStar Optical ImmunoAssay (OIA) point-of-care test (POCT) for diagnosing Neisseria gonorrhoeae. Journal of Medical Microbiology, 2011,60(12):1779-1781.
doi: 10.1099/jmm.0.034116-0
[20]   Sawa T, Kimura S, Honda N H , et al. Diagnostic usefulness of ribosomal protein L7/L12 for pneumococcal;pneumonia in a mouse model. Journal of Clinical Microbiology, 2013,51(1):70-76.
doi: 10.1128/JCM.01871-12
[21]   Sano G, Itagaki T, Ishiwada N , et al. Characterization and evaluation of newly developed immune-chromatographic method targeting mycoplasma pneumoniae ribosomal protein L7/L12. Journal of Medical Microbiology, 2016,65(10):1105-1110.
doi: 10.1099/jmm.0.000336 pmid: 27542383
[22]   Adegbola R A, Deantonio R, Hill P C , et al. Carriage of Streptococcus pneumoniae and other respiratory bacterial pathogens in low and lower-middle income countries: a systematic review and meta-analysis. PLoS One, 2014,9(8):1-17.
doi: 10.1371/journal.pone.0103293 pmid: 25084351
[1] ZHAO Yan-shu,ZHANG Jin-hua,SONG Hao. Advances in Production of Monoclonal Antibody and Antibody Fragments in Engineered Prokaryotes and Yeast[J]. China Biotechnology, 2020, 40(8): 74-83.
[2] JIANG Yi-fan,JIA Yu,Wang Long,WANG Zhi-ming. The Glycosylation Design and Control of Monoclonal Antibody by Cell Culture[J]. China Biotechnology, 2019, 39(8): 95-103.
[3] LIU Guo-fang,LIU Xiao-zhi,GAO Jian,WANG Zhi-ming. Effects of Host Cell Residual Proteins on the Quality and Their Quality Control of Monoclonal Antibody[J]. China Biotechnology, 2019, 39(10): 105-110.
[4] Jian-wei REN,Jun LI,Shang-ze LI. Human CT55 Protein Prokaryotic Expression and Its Production of Monoclonal Antibody[J]. China Biotechnology, 2018, 38(11): 1-8.
[5] Kai-yun MAO,Yue-lei FAN,Heng-zhe WANG,Da-ming CHEN. Market Competition Pattern of Global PD-1/PD-L1 Monoclonal Antibody[J]. China Biotechnology, 2018, 38(11): 103-115.
[6] Jing-jing SUN,Wei-wei ZHOU,Lei-ming ZHOU,Qiao-hui ZHAO,Gui-lin LI. Advance in Large-Scale Culture of Hybridoma Cells in Vitro[J]. China Biotechnology, 2018, 38(10): 82-89.
[7] WANG Yun-long, ZHAO Er-xia, LI Yu-lin. Expression, Purification and Identification of Thymidine Kinase 1 Recombinant Protein[J]. China Biotechnology, 2017, 37(9): 15-22.
[8] WU Meng-ling, ZHOU Jia-wang, DU Jun. Development and Application of A Double Monoclonal Antibody Sandwich ELISA for the Assay of Nodal[J]. China Biotechnology, 2017, 37(3): 51-57.
[9] LI Min, WU Ri-wei. The Market Overview of Monoclonal Antibodies in Both Domestic and Abroad[J]. China Biotechnology, 2017, 37(3): 106-114.
[10] REN Hua-jing, LIU Xiao-zhi, WANG Zhi-ming, GAO Jian. Progression of Central Nervous System Disease Therapeutic Antibody Drug Application[J]. China Biotechnology, 2016, 36(9): 54-58.
[11] ZHANG Yin-chuan, LIU Meng-meng, ZHANG Ya-ting, GUI Fang, ZHANG Ai-hua, BI Lan, PAN Yong-bin. Construction and Screening of Recombinant Cell Line Expressing Fully-human mAbs against Human IgE[J]. China Biotechnology, 2015, 35(3): 66-74.
[12] WANG Lan, XIA Mao, GAO Kai. The Development and Quality Control of Antibody-Drug Conjugates[J]. China Biotechnology, 2014, 34(4): 85-94.
[13] GAO Kai, XU Zhi-kai, REN Yue-ming, WAN Lan, WANG Jun-zhi, GUO Zhong-ping. Points to Consider for the General Monograph of Monoclonal Antibody Based Biotherapeutics in Chinese Pharamacopeia[J]. China Biotechnology, 2014, 34(1): 127-134.
[14] LI Ming-zhu, HAN Wei-dong, Xing Guang-hui, TENG Zhen-lin, XUE Guo-mei, HOU Chen-rui, RUAN Hong-qiang, CHEN Wei. Research of N Terminal Sequencing Methods for Monoclonal Antibody Pharmaceuticals Blocked by Pyroglutamic Acid[J]. China Biotechnology, 2013, 33(8): 75-83.
[15] WANG Zhi-ming, GAO Jian, LI Geng. The Status Quo and Development Trend of the Therapeutic Monoclonal Antibody Drugs[J]. China Biotechnology, 2013, 33(6): 117-124.