Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (4): 85-94    DOI: 10.13523/j.cb.20140414
    
The Development and Quality Control of Antibody-Drug Conjugates
WANG Lan, XIA Mao, GAO Kai
National Institutes for Food and Drug Control, Beijing 100050, China
Download: HTML   PDF(512KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

As the good targeting and anticancer activity, antibody-drug conjugates (ADCs) have become the new hot spot and important trends for anticancer antibody drug development, and get more and more attention. ADCs consist of a monoclonal antibody (MAb), a linker, and a cytotoxic drug. ADCs combine the targeting of MAb and the anticancer effects of cytotoxic drugs, reduce the adverse effects of cytotoxic drugs, improve the selectivity of cancer therapeutics, and better cope with the drug resistance problem of MAbs. Compared with traditional monoclonal antibodies, because of the complexity of ADCs, the establishment of analysis methods for ADC quality attributes has greater difficulty and specificity. The current development situation, analytical methods and challenges associated with characterization of ADCs were summarized. It will provide reference for researching and quality control of ADCs.



Key wordsMonoclonal antibody      Antibody-drug conjugate      Quality control     
Received: 24 February 2014      Published: 25 April 2014
ZTFLH:  R917  
Cite this article:

WANG Lan, XIA Mao, GAO Kai. The Development and Quality Control of Antibody-Drug Conjugates. China Biotechnology, 2014, 34(4): 85-94.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140414     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I4/85


[1] Perez H L, Cardarelli P M, Deshpande S, et al. Antibody-drug conjugates: current status and future directions. Drug Discov Today, 2013 Nov 15.
[Epub ahead of print].

[2] FDA. FDA news release: Pfizer voluntarily withdraws cancer treatment Mylotarg from U.S. market 2010,(http://www.fda.gov/%20NewsEvents/Newsroom/PressAnnouncements/ucm216448.htm).

[3] FDA. FDA news release: FDA approves Adcetris to treat two types of lymphoma.2011, (http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm268781.htm).

[4] FDA. FDA news release: FDA approves new treatment for late-stage breast cancer. 2013,(http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm340704.htm).

[5] Gerber H P, Koehn F E, Abraham R T. The antibody-drug conjugate: an enabling modality for natural product-based cancer therapeutics. Nat Prod Rep, 2013, 30 (5):625-639.

[6] Beck A, Reichert J M. Antibody-drug conjugates: Present and future. MAbs, 2014, 6 (1): 15-17.

[7] Wahl A F, Klussman K, Thompson J D, et al. The anti-CD30 monoclonal antibody SGN-30 promotes growth arrest and DNA fragmentation in vitro and affects antitumor activity in models of Hodgkin's disease. Cancer Res, 2002, 62 (13): 3736-3742.

[8] Slamon D J, Clark G M, Wong S G, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science, 1987, 235(4785):177-182.

[9] Thurber G M, Schmidt M M, Wittrup K D. Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv Drug Deliv Rev, 2008,60 (12): 1421-1434.

[10] Junttila T T, Li G, Parsons K, et al. Trastuzumab-DM1 (T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer. Breast Cancer Res Treat, 2011, 128 (2):347-356.

[11] McDonagh C F, Kim K M, Turcott E, et al. Engineered anti-CD70 antibody-drug conjugate with increased therapeutic index. Mol Cancer Ther, 2008, 7(9):2913-2923.

[12] DiJoseph J F, Doughr M M, Kalyandrug L B, et al. Antitumor efficacy of a combination of CMC-544 (inotuzumab ozogamicin), a CD22-targeted cytotoxic immunoconjugate of calicheamicin, and rituximab against non-Hodgkin's B-cell lymphoma. Clin Cancer Res, 2006, 12(1):242-249.

[13] Ricart A D. Antibody-drug conjugates of calicheamicin derivative: gemtuzumab ozogamicin and inotuzumab ozogamicin. Clin Cancer Res, 2011, 17 (20): 6417-6427.

[14] DiJoseph J F, Armellino D C, Boghaert E R, et al. Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood, 2004, 103(5): 1807-1817.

[15] Senter P D, Sievers E L. The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat Biotechnol, 2012, 30(7):631-637.

[16] Lewis Philips G D, Li G, Dugger D L, et al. Targeting HER2-positive breast cancer with transtuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res, 2008, 68(22):9280-9290.

[17] Alley S C, Benjamin D R, Jeffrey S C, et al. Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug Chem, 2008, 19(3):759-765.

[18] Wang L, Amphlett G, Blattler W A, et al. Structural characterization of the maytansinoid-monoclonal antibody immunoconjugate, huN901-DM1, by mass spectrometry. Protein Sci, 2005, 14(9):2436-2446.

[19] Hamblett K J, Senter P D, Chace D F, et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res, 2004,10(20):7063-7070.

[20] Junutula J R, Raab H, Clark S, et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol, 2008, 26(8):925-932.

[21] Axup J Y, Baijuri K M, Ritland M, et al. Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc Natl Acad Sci U S A, 2012, 109(40): 16101-16106.

[22] Hofer T, Skeffington L R, Chapman C M, et al. Molecularly defined antibody conjugation through a selenocysteine interface. Biochemistry, 2009,48(50):12047-12057.

[23] Stro P P, Liu S H, Dorywalska M, et al. Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem Biol, 2013, 20(2): 161-167.

[24] Senter P D. Potent antibody drug conjugates for cancer therapy. Curr Opin Chem Biol, 2009, 13(3):235-244.

[25] Trail P A, Willner D, Lasch S J, et al. Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science, 1993, 261(5118):212-215.

[26] Saleh M N, Sugarman S, Murray J, et al. Phase I trial of the anti-Lewis Y drug immunoconjugate BR96-doxorubicin in patients with lewis Y-expressing epithelial tumors. J Clin Oncol, 2000, 18(11):2282-2292.

[27] Casi G, Neri D. Antibody-drug conjugates: basic concepts, examples and future perspectives. J Control Release, 2012, 161(2):422-428.

[28] Alley S C, Okeley N M, Senter P D. Antibody-drug conjugates: targeted drug delivery for cancer. Curr Opin Chem Biol, 2010, 14(4):529-537.

[29] Teicher B A, Chari R V. Antibody conjugate therapeutics: challenges and potential. Clin Cancer Res, 2011, 17(20): 6389-6397.

[30] Hartley J A. The development of pyrrolobenzodiazepines as antitumour agents. Expert Opin Investig Drugs, 2011, 20(6): 733-744.

[31] Nguyen V T, Giannoni F, Dubois M F, et al. In vivo degradation of RNA polymerase II largest subunit triggered by alpha-amanitin. Nucleic Acids Res, 1996, 24(15):2924-2929.

[32] Magdalan J, Ostrowska A, Piotrowska A, et al. alpha-Amanitin induced apoptosis in primary cultured dog hepatocytes. Folia Histochem Cytobiol, 2010,48(1):58-62.

[33] Moldenhauer G, Salnikov A V, Luttgau S, et al. Therapeutic potential of amanitin-conjugated anti-epithelial cell adhesion molecule monoclonal antibody against pancreatic carcinoma. J Natl Cancer Inst, 2012, 104(8): 622-634.

[34] Sun M M, Beam K S, Cerveny C G, et al. Reduction-alkylation strategies for the modification of specific monoclonal antibody disulfides. Bioconjugate Chem, 2005,16 (5):1282-1290.

[35] McDonagh C F, Turcott E, Westendorf L, et al. Engineered antibody-drug conjugates with defined sites and stoichiometries of drug attachment. Protein Eng Des Sel, 2006, 19(7):299-307.

[36] Erickson H K, Park P U, Widdison W C, et al. Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res, 2006, 66(8):4426-4433.

[37] Junutula J R, Raab H, Clark S, et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol, 2008, 26(8):925-932.

[38] Fleming M S, Zhang W, Lambert J M,et al. A reversed-phase high-performance liquid chromatography method for analysis of monoclonal antibody-maytansinoid immunoconjugates. Anal Biochem, 2005, 340(2):272-278.

[39] Francisco J A, Cerveny C G, Meyer D L, et al. cAC10-Val-CitMMAE, an anti-CD30- monomethyl auristatin E conjugate with potent and selective anti-tumor activity. Blood, 2003, 102(4):1458-1465.

[40] Doronina S O, Mendelsohn B A, Bovee T D, et al. Enhance activity of monomethylauristatin F through monoclonal antibody delivery: effect of linker technology on efficacy and toxicity. Bioconjug Chem, 2006, 17(1):114-124.

[41] Laguzza B C, Nichols C L, Briggs S L, et al. New antitumor monoclonal antibody-vinca conjugates LY203725 and related compounds: design, preparation, and representative in vivo activity. J Med Chem, 1989, 32(3):548-555.

[42] Phillips G D L, Li G, Dugger D L, et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res, 2008, 68(22):9280-9290.

[43] Sanderson R J, Hering M A, James S F, et al. In vivo drug-linker stability of anti-CD30 dipeptide-linked auristatin immunoconjugate. Clin Cancer Res, 2005, 11(2 Pt 1):843-852.

[44] Xu K, Saad O, Baudys J, et al. Bioanalytical strategies for antibody drug conjugate (ADC) biopharmaceutical development: characterization of trastuzumab-MCC-DM1 in plasma by affinity mass spectrometry. J Am Soc Mass Spec, 2007, 18(5): S11-S15.

[45] Valliere-Douglass J F, McFee W A, Salas-Solano O. Native intact mass determination of antibodies conjugated with monomethyl auristatin E and F at interchain cysteine residues. Anal Chem, 2012, 84(6):2843-2849.

[46] Hamblett K J, Senter P D, Chace D F, et al. Effects of drug loading on the anti-tumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res, 2004, 10(20):7063-7070.

[47] Siegel M M, Hollander I J, Hamann P R, et al. Matrix-assisted UV-laser desorption/ionization mass spectrometric analysis of monoclonal antibodies for the determination of carbohydrate, conjugated chelator, and conjugated drug content. Anal Chem, 1991, 63(21):2470-2481.

[48] Gazzano-Santoro H, Ralph P, Ryskamp T C, et al. A non-radioactive complementdependent cytotoxicity assay for anti-CD20 monoclonal antibody. J Immunol Methods, 1997, 202(2): 163-171.

[49] Ferrone S, Cooper N R, Pellegrino M A, et al. The lymphocytotoxic reaction: the mechanism of rabbit complement action. J Immunol, 1971, 107(4):939-947.

[50] Sharkey R M, Govindan S V, Cardillo T M, et al. Epratuzumab-SN-38: a new antibody-drug conjugate for the therapy of hematologic malignancies. Mol Cancer Ther, 2012, 11(1):224-234.

[51] 高凯, 徐志凯, 任跃明, 等. 关于我国药典单克隆抗体类生物治疗药物总论的思考. 中国生物工程杂志, 2014, 34(1):127-134. Gao K, Xu Z K, Ren Y M, et al. Points to consider for the general monograph of monoclonal antibody based biotherapeutics in Chinese Pharamacopeia. China Biotechnology, 2014, 34(1): 127-134.

[1] CHEN Wen-jie,MIAO Xian-feng. Domestic Research and Development Status of Antibody-drug Conjugates and Strategic Layout of Key Enterprises[J]. China Biotechnology, 2021, 41(6): 105-110.
[2] ZHAO Yan-shu,ZHANG Jin-hua,SONG Hao. Advances in Production of Monoclonal Antibody and Antibody Fragments in Engineered Prokaryotes and Yeast[J]. China Biotechnology, 2020, 40(8): 74-83.
[3] WANG Meng,SONG Hui-ru,CHENG Yu-jie,WANG Yi,YANG Bo,HU Zheng. Accurate Detection of Streptococcus pneumoniae by Using Ribosomal Protein L7 / L12 as Molecular Marker[J]. China Biotechnology, 2020, 40(4): 34-41.
[4] JIANG Yi-fan,JIA Yu,Wang Long,WANG Zhi-ming. The Glycosylation Design and Control of Monoclonal Antibody by Cell Culture[J]. China Biotechnology, 2019, 39(8): 95-103.
[5] LIU Guo-fang,LIU Xiao-zhi,GAO Jian,WANG Zhi-ming. Effects of Host Cell Residual Proteins on the Quality and Their Quality Control of Monoclonal Antibody[J]. China Biotechnology, 2019, 39(10): 105-110.
[6] Sai-bao LIU,Ya-fang LI,Hui WANG,Wei WANG,Duo-liang RAN,Hong-yan CHEN,Qing-wen MENG. Construction of Influenza Virus High-producing Cell Line MDCK-Tpl2 -/- with CRISPR / Cas9[J]. China Biotechnology, 2019, 39(1): 46-54.
[7] Jian-wei REN,Jun LI,Shang-ze LI. Human CT55 Protein Prokaryotic Expression and Its Production of Monoclonal Antibody[J]. China Biotechnology, 2018, 38(11): 1-8.
[8] Kai-yun MAO,Yue-lei FAN,Heng-zhe WANG,Da-ming CHEN. Market Competition Pattern of Global PD-1/PD-L1 Monoclonal Antibody[J]. China Biotechnology, 2018, 38(11): 103-115.
[9] Jing-jing SUN,Wei-wei ZHOU,Lei-ming ZHOU,Qiao-hui ZHAO,Gui-lin LI. Advance in Large-Scale Culture of Hybridoma Cells in Vitro[J]. China Biotechnology, 2018, 38(10): 82-89.
[10] WANG Yun-long, ZHAO Er-xia, LI Yu-lin. Expression, Purification and Identification of Thymidine Kinase 1 Recombinant Protein[J]. China Biotechnology, 2017, 37(9): 15-22.
[11] WU Meng-ling, ZHOU Jia-wang, DU Jun. Development and Application of A Double Monoclonal Antibody Sandwich ELISA for the Assay of Nodal[J]. China Biotechnology, 2017, 37(3): 51-57.
[12] LI Min, WU Ri-wei. The Market Overview of Monoclonal Antibodies in Both Domestic and Abroad[J]. China Biotechnology, 2017, 37(3): 106-114.
[13] REN Hua-jing, LIU Xiao-zhi, WANG Zhi-ming, GAO Jian. Progression of Central Nervous System Disease Therapeutic Antibody Drug Application[J]. China Biotechnology, 2016, 36(9): 54-58.
[14] WANG Dian-liang. The Standards and Quality Control of Cell Drug[J]. China Biotechnology, 2016, 36(10): 115-121.
[15] ZHANG Yin-chuan, LIU Meng-meng, ZHANG Ya-ting, GUI Fang, ZHANG Ai-hua, BI Lan, PAN Yong-bin. Construction and Screening of Recombinant Cell Line Expressing Fully-human mAbs against Human IgE[J]. China Biotechnology, 2015, 35(3): 66-74.