Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (3): 88-95    DOI: 10.13523/j.cb.1907025
Orginal Article     
Improving the Enantioselectivity of an Epoxide Hydrolase towards p-Methylphenyl Glycidyl Ether by Site-directed Mutagenesis
SU Yong-jun1,HU Die2,HU Bo-chun3,LI Chuang3,WEN Zheng3,ZHANG Chen1,WU Min-chen2,**
1 School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China
2 Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
3 School of Biotechnology, Jiangnan University, Wuxi 214122, China
Download: HTML   PDF(965KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Epoxide hydrolase can be used in the kinetic resolution or enantioconvergent hydrolysis of racemic epoxides for prepare optically pure epoxides or vicinal diols, which has broad application prospects. To improve the enantioselectivity of Aspergillus usamii epoxide hydrolase (AuEH2) towards racemic p-methylphenyl glycidyl ether (rac-pMPGE). According to the protein-ligand finger-print (IFP) in the molecular dynamics simulation, the key residue site A250 with the highest interaction frequency towards (R)-pMPGE was selected, and then replaced by other 19 residues by site-directed mutagenesis. A mutant with the improved enantioselectivity was obtained and purified by affinity chromatography. Furthermore, the kinetic parameters and regioselectivity coefficients towards (R)-and (S)-pMPGE of the purified mutant were measured, respectively, and the recombinant E. coli whole cells was applied to the kinetic resolution of rac-pMPGE. The mutant AuEH2A250H possessed the highest E value of 38.4, which was remarkably higher than that of AuEH2 (12.7). The specific activity of E. coli/aueh2A250H was determined to be 51.9U/g wet cells. The kcat/Km for (S)-pMPGE of the purified AuEH2A250H was increased from 10.0mmol/(L·s) to 12.8mmol/(L·s), while decreased from 1.13mmol/(L·s) to 0.35mmol/(L·s) for (R)-pMPGE. Furthermore, using the whole cells of E. coli/aueh2A250H as biocatalyst, the kinetic resolution of 20mmol/L rac-pMPGE was performed at 25℃ for 1h, obtaining (R)-pMPGE with > 99% ees and 40.7% yield. The results indicated that the mutations at A250 played an essential role in regulating the activity and enantioselectivity of AuEH2. The mutant with the improvement of enantioselectivity of AuEH2, which has potential for industrial application on the preparation of (R)-pMPGE.



Key wordsEpoxide hydrolase      Rational design      Site-directed mutagenesis      Enantioselectivity p-Methyl      phenyl glycidyl ether     
Received: 12 July 2019      Published: 18 April 2020
ZTFLH:  Q814.9  
Corresponding Authors: Min-chen WU   
Cite this article:

SU Yong-jun,HU Die,HU Bo-chun,LI Chuang,WEN Zheng,ZHANG Chen,WU Min-chen. Improving the Enantioselectivity of an Epoxide Hydrolase towards p-Methylphenyl Glycidyl Ether by Site-directed Mutagenesis. China Biotechnology, 2020, 40(3): 88-95.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.1907025     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I3/88

Primer namePrimer sequence (5'→3')*Primer namePrimer sequence (5'→3')
A250D1-FGGCAGTGGTTATGATGTCGAGCATGGA250T11-FGGCAGTGGTTATACCGTCGAGCATGGT
A250E2-FGCAGTGGTTATGAAGTCGAGCATGGTAA250Y12-FGGCAGTGGTTATACCGTCGAGCATGGT
A250R3-FGCAGTGGTTATCGTGTCGAGCATGGTACA250C13-FGGCAGTGGTTATTGTGTCGAGCATGG
A250K4-FGGCAGTGGTTATAAAGTCGAGCATGGTA250V15-FCCTTTGGCAGTGGTTATGTGGTCGAGCATGGT
A250H5-FGGCAGTGGTTATCACGTCGAGCATGGTA250L16-FCCTTTGGCAGTGGTTATCTGGTCGAGCATGGT
A250G6-FGCAGTGGTTATGGCGTCGAGCATGGA250I17-FCCTTTGGCAGTGGTTATATCGTCGAGCATGGT
A250P7-FGGCAGTGGTTATCCTGTCGAGCATGA250M18-FCCTTTGGCAGTGGTTATATGGTCGAGCATGGT
A250N8-FGGCAGTGGTTATAATGTCGAGCATGGA250F19-FGGCAGTGGTTATTTCGTCGAGCATGGT
A250Q9-FGGCAGTGGTTATCAGGTCGAGCATGGTA250W20-FGGCAGTGGTTATTGGGTCGAGCATGGT
A250S10-FGGCAGTGGTTATCCGGTCGAGCATGGTpET28a-2254-RGCCTTACTGGTTAGCAGAATG
Table 1 PCR primers for the site-directed mutagenesis
Fig.1 Analysis of molecular docking and molecular dynamics simulation(a) The 3D structure model of AuEH2 (b) Molecular docking model of AuEH2 with (R)-pMPEG (c) The IFP plot between AuEH2 with (R)-pMPEG in the MD simulation
Fig.2 Relative activity (a) and enantioselectivity (b) of AuEH2 and its mutants
Fig.3 SDS-PAGE analysis of the expressed AuEH2 and the mutant AuEH2A250HM: Protein marker; Lane 1: E. coli/pET-28a; Lane 2: E. coli/aueh2; Lane 3: Purified AuEH2; Lane 4: Purified AuEH2A250H
Enzyme(S)-pMPGE(R)-pMPGEE**Regioselectivity
coefficients
Km
(mmol/L)
kcat
(s-1)
kcat/Km
[mmol/(L·s)]
Km
(mmol/L)
kcat
(s-1)
kcat/Km
[mmol/(L·s)]
βS (%)βR (%)
AuEH20.44±0.014.42 ± 0.2110.02.85±0.123.32±0.151.138.6>99.998.1%
AuEH2A250H0.12±0.0051.54±0.0912.82.99±0.101.04±0.030.3536.0>99.998.7%
Table 2 Determination of kinetic parameters of WT and variants*
Fig. 4 Regioselectivity of AuEH2A250H towards (R)-and (S)-pMPGE
Fig.5 The hydrolytic course curve of rac-pMPGE catalyzed by E. coli/aueh2 (a) and E. coli/aueh2A250H (b)
Enzyme sourceCatalyst formSpecific
activity
(U/g Wet
cells)
Sub.
(mmol/L)
Time
(h)
eeseepYield
(%)
ERef.
A. nigerWhole cellsNI*204100 (R)NI (S)23NI[7]
T. paurometabolaPurified re-enzymeNI20196.3 (R)NI (S)4119[16]
Trichosporon loubieriilyophilized cellsNINI688 (R)NI (S)4517[8]
Phaseolus vulgarisE.coli whole cells2.410NINI (R)NI (S)NI6.2[4]
Bacillus megateriumlyophilized cellsNINI2084 (R)NI (S)4421[17]
Aspergillus usamiiE.coli whole cell**96.420196.1 (R)47.3 (S)33.012.7This study
Aspergillus usamiiE.coli whole cells***51.9201.6799.5 (R)68.0 (S)40.738.4This study
Table 3 Comparison of resolution of rac-pMPGE to prepare (R)-pMPGE with reported EHs
Fig.6 The hydrolytic course curve of preparation of (R)-pMPGE by whole cells of E. coli/aueh2A250H
[1]   娄文勇, 赵莹, 彭飞, 等. 环氧化物水解酶的研究进展. 华南师范大学学报, 2017,49(6): 1-6.
[1]   Lou W Y, Zhao Y, Peng F, et al.Research progress on epoxide hydrolase. Journal of South China Normal University, 2017,49(6): 1-6.
[2]   Roh E J, Shin K J, Lee C J, et al.Phenoxypropanol derivative and pharmaceutical composition includin the same:US,US 9,458,120 B2. 2016Phenoxypropanol derivative and pharmaceutical composition includin the same:US,US 9,458,120 B2. 2016-10-04[2019-12-04]..
[3]   王瑞, 许耀辉, 王克伟, 等. 环氧化物水解酶PvEH3的表达及手性邻二醇的合成. 化工进展, 2018, 37(5): 1933-1939.
[3]   Wang R, Xu Y H, Wang K W, et al.Expression of PvEH3, a Phaseolus vulgaris epoxide hydrolase, and synthesis of chiral vicinal diols. Chemical Industry and Engineering Progress, 2018, 37(5): 1933-1939.
[4]   Li C, Hu D, Zong X C, et al.Asymmetric hydrolysis of styrene oxide by PvEH2, a novel Phaseolus vulgaris epoxide hydrolase with extremely high enantioselectivity and regioselectivity. Catalysis Communications, 2017, 102 : 57-61.
[5]   Zhao J, Chu Y Y, Li A T, et al.An unusual (R)-selective epoxide hydrolase with high activity for facile preparation of enantiopure glycidyl ethers. Adv Synth Catal, 2011, 353(9): 1510-1518.
[6]   Bala N, Chimni S S, Saini H S, et al.Bacillus alcalophilus MTCC10234 catalyzed enantioselective kinetic resolution of aryl glycidyl ethers.Journal of Molecular Catalysis B: Enzymatic, 2010, 63(3-4): 128-134.
[7]   Choi W J, Huh E C, Park H J, et al.Kinetic resolution for optically active epoxides by microbial enantioselective hydrolysis. Biotechnology Techniques, 1998, 12(3): 225-228.
[8]   Xu Y,XU J H,Pan J.Biocatalytic resolution of glycidyl aryl ethers by Trichosporon loubierii:cell/substrate ratio influences the optical purity of (R)-epoxides. Biotechnology Letters, 2004, 26(15): 1217-1221.
[9]   Hu D, Tang C D, Yang B, et al.Expression of a novel epoxide hydrolase of Aspergillus usamii E001 in Escherichia coli and its performance in resolution of racemic styrene oxide. J Ind Microbiol Biotechnol, 2015, 42 : 671-680.
[10]   de Almeida C G, Reis S G, de Almeida A M, et al. Synthesis and antibacterial activity of aromatic and heteroaromatic amino alcohols. Chem Biol Drug Des, 2011, 78(5): 876-880.
[11]   Li J F, Wei X H, Tang C D, et al.Directed modification of the Aspergillus usamii β-mannanase to improve its substrate affinity by in silico design and site-directed mutagenesis. J Ind Microbiol Biotechnol, 2014, 41(4): 693-700.
[12]   Kong X D, Ma Q, Zhou J, et al.A smart library of epoxide hydrolase variants and the top hits for synthesis of (S)-β-blocker precursors. Angewandte Chemie International Edition, 2014, 53(26): 6641-6644.
[13]   Rakels J L L, Straathof A J J, Heijnen J J. A simple method to determine the enantiomeric ratio in enantioselective biocatalysis. Enzyme and Microbial Technology, 1993, 15(12): 1051-1056.
[14]   Bradford M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72(1-2): 248-254.
[15]   Sun Z T, Wu L, Marco Bocola, et al.Structural and computational insight into the catalytic mechanism of limonene epoxide hydrolase mutants in stereoselective transformations. Journal of the American Chemical Society, 2018, 140(1), 310-318.
[16]   Wu K, Wang H L, Sun H H, et al.Efficient kinetic resolution of phenyl glycidyl ether by a novel epoxide hydrolase from Tsukamurella paurometabola. Appl Microbiol and Biotechnol, 2015, 99(22): 9511-9521.
[17]   Zhang Z F, Sheng Y M, Jiang K Y, et al.Bio-resolution of glycidyl (o, m, p)-methylphenyl ethers by Bacillus megaterium. Biotechnology Letters, 2010, 32(4): 513-516.
[1] WEI Zi-xiang,ZHANG Liu-qun,LEI Lei,HAN Zheng-gang,YANG Jiang-ke. Improving the Activity and Thermal Stability of Thermomyces lanuginosus Lipase by Rational Design[J]. China Biotechnology, 2021, 41(2/3): 63-69.
[2] LI Bing-juan,LIU Jin-ding,LIAO Yi-fang,HAN Wen-ying,LIU Ke,HOU Chen-lu,ZHANG Lei. Advances in Protein Engineering of the Old Yellow Enzyme OYE Family[J]. China Biotechnology, 2020, 40(3): 163-169.
[3] ZHAO Xiao-yan,CHEN Yun-da,ZHANG Ya-qian,WU Xiao-yu,WANG Fei,CHEN Jin-yin. Site-directed Mutagenesis Improves the Thermostability of Trehalose Synthase TreS II from Myxococcus sp.V11[J]. China Biotechnology, 2020, 40(3): 79-87.
[4] Ting-ting KAN,Xun-cheng ZONG,Yong-jun SU,Ting-ting WANG,Chuang LI,Die HU,Min-chen WU. Site-directed Mutagenesis of PvEH1 to Improve Its Catalytic Properties towards ortho-Methylphenyl Glycidyl Ether[J]. China Biotechnology, 2019, 39(6): 9-16.
[5] Hao-yi MENG,Dan-yang LI,Zheng-yang SUN,Zhao-yong YANG,Zhi-fei ZHANG,Li-jie YUAN. Substrate-binding Site of Ubiquitous Mitochondrial Creatine Kinase from Homo sapiens[J]. China Biotechnology, 2018, 38(5): 24-32.
[6] LI Xue-qing, YUAN Feng-jiau, CHENG Jian-qing, DONG Yun-hai, LI Jian-fang, WU Min-chen. Effect of Amino Acid H321 on the Enzymatic Properties of Hybrid β-Mannanase AuMan5Aloop[J]. China Biotechnology, 2017, 37(2): 48-53.
[7] Cun-duo TANG,Hong-ling SHI,Zhu-jin JIAO,Fei LIU,Jian-he XU,Yun-chao KAN,Lun-guang YAO. Effect of Prolines in the Loop of CPC Acylase Substrate Binding Region on Its Catalytic Properties[J]. China Biotechnology, 2017, 37(12): 34-39.
[8] YU Xiao-dan, WU Xiu-xiu, YAO Dong-sheng, LIU Da-ling, XIE Chun-fang. Trypsin-resistant Improvement of Bacillus subtilis β-1,4-endoxylanase by Rational Design Based on Molecular Structure Evaluation[J]. China Biotechnology, 2016, 36(8): 80-88.
[9] GUO Chao, WANG Zhi-yan, GAN Yi-ru, LI Dan, DENG Yong, YU Hao-ran, HUANG He. Engineering Thermostability of Bovine Enterokinase by Rational Design Method[J]. China Biotechnology, 2016, 36(8): 46-54.
[10] WU Qin, HU Die, LI Xue-qing, YUAN Feng-jiao, LI Jian-fang, WU Min-chen. Site-directed Mutagenesis of Y13F to Improve the Thermotolerance of Mesophilic Xylanase from Aspergillus oryzae[J]. China Biotechnology, 2016, 36(12): 36-41.
[11] XIANG Mian, ZHU Jian-quan, YU Ji-hua, LI Yang-yang, LI Juan-juan, LIU Zu-bi, WANG Wan-jun, LIAO Hai, ZHOU Jia-yu. The Site-directed Mutation of Key Residues and the Analysis about Inhibitory Activity of Cassia obtusifolia Trypsin Inhibitor[J]. China Biotechnology, 2016, 36(10): 15-20.
[12] YE Hui-hua, HU Die, LI Chuang, CHENG Jian-qing, DENG Chao, WU Min-chen. Expression of a Novel Epoxide Hydrolase from Phaseolus vulgaris and Its Enantioconvergent Catalytic Performance[J]. China Biotechnology, 2016, 36(10): 21-27.
[13] LI Yao-yao, BI Jing, WANG Yi-hong, QIN Yun-he, ZHANG Xue-lian. Lysine-322 Acetylation Negatively Regulates Isocitrate Lyase of Mycobacterium tuberculosis[J]. China Biotechnology, 2015, 35(6): 8-13.
[14] GAO Rui-ping, CHENG Long-bin, LI Zhen-qiu. A Simple and Rapid Single Primer PCR Method for Site-directed Mutagenesis[J]. China Biotechnology, 2015, 35(5): 61-65.
[15] XIA Ya-mu, LI Chen-chen. Genetic Modification and High Expression of Cyclodextrin Glycosyltransferase[J]. China Biotechnology, 2015, 35(2): 105-110.