Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (10): 21-27    DOI: 10.13523/j.cb.20161004
    
Expression of a Novel Epoxide Hydrolase from Phaseolus vulgaris and Its Enantioconvergent Catalytic Performance
YE Hui-hua1, HU Die2, LI Chuang2, CHENG Jian-qing3, DENG Chao3, WU Min-chen3
1. School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China;
2. School of Biotechnology, Jiangnan University, Wuxi 214122, China;
3. Wuxi Medical School, Jiangnan University, Wuxi 214122, China
Download: HTML   PDF(988KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To excavate a novel epoxide hydrolase from Phaseolus vulgaris (PvEH1) and explore its enantioconvergent catalytic performance, a PvEH1-encoding gene (pveh1) was amplified from the P. vulgaris total RNA by RT-PCR technique. Then, pveh1 was heterologously expressed in E. coli BL21(DE3) mediated by an expression plasmid pET28a(+). Analysis of primary and three-dimensional structures indicated that the identities of PvEH1 with Vigna radiata and Medicago truncatula epoxide hydrolases are 85.7 and 81.1%. Its catalytic triad is Asp101-His299-Asp264, belonging to the α/β-hydrolase superfamily. When the conversion rate of racemic styrene oxide catalyzed by PvEH1 reached 99.1%, the product, (R)-1-phenyl-1,2-ethanediol, was obtained with an enantiomeric purity of 33.6% e.e.p. PvEH1 possesses the opposite regioselectivity towards (S)-SO and (R)-SO with regioselectivity coefficients (αS and βR) of 91.1 and 53.3%. The discovery of PvEH1 and characterization of its enantioconvergence not only increased the number of plant EHs, but also established a foundation for the study of its catalytic mechanism and the directed modification of its regioselectivity.



Key wordsEpoxide hydrolase      Expression      Phaseolus vulgaris      Enantioconvergence     
Received: 05 April 2016      Published: 25 October 2016
ZTFLH:  Q78  
Cite this article:

YE Hui-hua, HU Die, LI Chuang, CHENG Jian-qing, DENG Chao, WU Min-chen. Expression of a Novel Epoxide Hydrolase from Phaseolus vulgaris and Its Enantioconvergent Catalytic Performance. China Biotechnology, 2016, 36(10): 21-27.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20161004     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I10/21

[1] 鞠鑫, 潘江, 许建和. 绿豆环氧水解酶催化对硝基苯乙烯氧化物的对映归一性水解. 催化学报, 2008, 29(8): 696-700. Ju X, Pan J, Xu J H. Enantioconvergent hydrolysis of p-nitrostyrene oxide catalyzed by mung bean epoxide hydrolase. Chinese J Catal, 2008, 29(8): 696-700.
[2] Choi W J. Biotechnological production of enantiopure epoxides by enzymatic kinetic resolution. Appl Microbiol Biotechnol, 2009, 84(2): 239-247.
[3] Kotik M, Archelas A, Wohlgemuth R. Epoxide hydrolases and their application in organic synthesis. Curr Org Chem, 2012, 16(4): 451-482.
[4] Lin S, Horsman G P, Shen B. Characterization of the epoxide hydrolase NcsF2 from the neocarzinostatin biosynthetic gene cluster. Org Lett, 2010, 12(17): 3816-3819.
[5] Orru R V, Mayer S F, Kroutil W, et al. Chemoenzymatic deracemization of (±)-2,2-disubstituted oxiranes. Tetrahedron, 1998, 54(5): 859-874.
[6] Kotik M, Archelas A, Famerova V, et al. Laboratory evolution of an epoxide hydrolase-Towards an enantioconvergent biocatalyst. J Biotechnol, 2011, 156(1): 1-10.
[7] Zhu Q Q, He W H, Kong X D, et al. Heterologous overexpression of Vigna radiata epoxide hydrolase in Escherichia coli and its catalytic performance in enantioconvergent hydrolysis of p-nitrostyrene oxide into (R)-p-nitrophenyl glycol. Appl Microbiol Biotechnol, 2014, 98(1): 207-218.
[8] Wu Y W, Kong X D, Zhu Q Q, et al. Chemoenzymatic enantioconvergent hydrolysis of p-nitrostyrene oxide into (R)-p-nitrophenyl glycol by a newly cloned epoxide hydrolase VrEH2 from Vigna radiata. Catal Commun, 2015, 58: 16-20.
[9] Arand M, Wagner H, Oesch F. Asp333, Asp495, and His523 form the catalytic triad of rat soluble epoxide hydrolase. J Biol Chem, 1996, 271(8): 4223-4229.
[10] Mowbray S L, Elfstrom L T, Ahlgren K M, et al. X-ray structure of potato epoxide hydrolase sheds light on substrate specificity in plant enzymes. Protein Sci, 2006, 15(7): 1628-1637.
[11] Barth S, Fischer M, Schmid R D, et al. Sequence and structure of epoxide hydrolases: a systematic analysis. Proteins, 2004, 55(4): 846-855.
[12] 吴燕雯. 绿豆环氧水解酶VrEH2催化性质研究及分子改造的初步探索. 上海: 华东理工大学, 2015. Wu Y W. Studies on the catalytic properties of epoxide hydrolase 2 from Vigna radiata (VrEH2) and its preliminary molecular modification. Shanghai: East China University of Science and Technology, 2015.
[13] Monterde M I, Lombard M, Archelas A, et al. Enzymatic transformations. Part 58: Enantioconvergent biohydrolysis of styrene oxide derivatives catalysed by the Solanum tuberosum epoxide hydrolase. Tetrahedron, 2004, 15(18): 2801-2805.
[14] Xu W, Xu J H, Pan J, et al. Enantioconvergent hydrolysis of styrene epoxides by newly discovered epoxide hydrolases in mung bean. Org Lett, 2006, 8(8): 1737-1740.
[15] Kotik M, Zhao W, Iacazio G, et al. Directed evolution of metagenome-derived epoxide hydrolase for improved enantioselectivity and enantioconvergence. J Mol Catal B Enzym, 2013, 91: 44-51.

[1] QIAO Sheng-tai,WANG Man-qi,XU Hui-ni. Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro[J]. China Biotechnology, 2021, 41(8): 25-32.
[2] LI Bing,ZHANG Chuan-bo,SONG Kai,LU Wen-yu. Research Progress in Biosynthesis of Rare Ginsenosides[J]. China Biotechnology, 2021, 41(6): 71-88.
[3] WANG Hui-lin,ZHOU Kai-qiang,ZHU Hong-yu,WANG Li-jing,YANG Zhong-fan,XU Ming-bo,CAO Rong-yue. Research Progress of Human Coagulation Factor VII and the Recombinant Expression Systems[J]. China Biotechnology, 2021, 41(2/3): 129-137.
[4] ZHANG Lei,TANG Yong-kai,LI Hong-xia,LI Jian-lin,XU Yu-xin,LI Ying-bin,YU Ju-hua. Advances in Promoting Solubility of Prokaryotic Expressed Proteins[J]. China Biotechnology, 2021, 41(2/3): 138-149.
[5] LIU Mei-qin,GAO Bo,JIAO Yue-ying,LI Wei,YU Jie-mei,PENG Xiang-lei,ZHENG Yan-peng,FU Yuan-hui,HE Jin-sheng. Long Non-coding RNA Expression Profile in A549 Cells Infected with Human Respiratory Syncytial Virus[J]. China Biotechnology, 2021, 41(2/3): 7-13.
[6] YANG Xi,LUAN Yu-shi. Preliminary Study of Sly-miR399 in Tomato Resistance to Late Blight[J]. China Biotechnology, 2021, 41(11): 23-31.
[7] CHEN Su-fang,XIA Ming-yin,ZENG Li-yan,AN Xiao-qin,TIAN Min-fang,PENG Jian. Recombinant Expression and Detection of Antimicrobial Activity of Cec4a[J]. China Biotechnology, 2021, 41(10): 12-18.
[8] SHI Peng-cheng, JI Xiao-jun. Advances in Expression of Human Epidermal Growth Factor in Yeast[J]. China Biotechnology, 2021, 41(1): 72-79.
[9] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[10] DENG Tong,ZHOU Hai-sheng,WU Jian-ping,YANG Li-rong. Enhance Soluble Heteroexpression of a NADPH-Dependent Alcohol Dehydrogenase Based on the Chaperone Strategy[J]. China Biotechnology, 2020, 40(8): 24-32.
[11] ZHANG Xiao-hang,LI Yuan-yuan,JIA Min-xuan,GU Qi. Identification and Expression of Elastin-like Polypeptides[J]. China Biotechnology, 2020, 40(8): 33-40.
[12] LV Yi-fan,LI Geng-dong,XUE Nan,LV Guo-liang,SHI Shao-hui,WANG Chun-sheng. Prokaryotic Expression, Purification of LbCpf1 Protein Gene and in Vitro Cleavage Activity Assay[J]. China Biotechnology, 2020, 40(8): 41-48.
[13] JIANG Dan-dan,WANG Yun-long,LI Yu-lin,Zhang Yi-qing. Study on the Delivery of RGD Modified Virus-Like Particles to ICG Targeted Tumors[J]. China Biotechnology, 2020, 40(7): 22-29.
[14] CHENG Xu,YANG Yu-qing,WU Sai-nan,HOU Qin-long,LI Yong-mei,HAN Hui-ming. Construction of DNA Vaccines of Staphylococcus aureus SarA, IcaA and Their Fusion Genes and Preliminary Study in Mouse Immune Response[J]. China Biotechnology, 2020, 40(7): 41-50.
[15] WEI Wei,CHANG Bao-gen,WANG Ying,LU Fu-ping,LIU Fu-feng. Heterologous Expression, Purification and Aggregation Characterization of Tau Core Fragment 306-378[J]. China Biotechnology, 2020, 40(5): 22-29.