Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (2): 105-110    DOI: 10.13523/j.cb.20150216
    
Genetic Modification and High Expression of Cyclodextrin Glycosyltransferase
XIA Ya-mu, LI Chen-chen
Qing Dao University of Science and Technology, Qingdao 266042, China
Download: HTML   PDF(405KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Cyclodextrin glycosyltransferase(CGTase,EC 2.4.1.19) is an important enzyme with multiple functions, particularly the production of cyclodextrins (CD) and carbohydrate glycosylation. It is also applied in food industry. To modify the molecular structure of CGTase for improved performance in industrial applications, heterologous expression, site-directed mutagenesis and immobilization technology of cyclodextrin glycosyltransferase gene have been applied. Moreover, in recent years substantial progress has been made. In order to provide the reference in the related CGTase research, the heterologous expression strategies, the molecular engineering approaches, other technologies such as immobilized enzyme etc. were systematically summarized and discussed.



Key wordsCyclodextrin glucanotransferase      Cyclodextrin      Heterologous expression      Site-directed mutagenesis      Molecular engineering     
Received: 04 November 2014      Published: 25 February 2015
ZTFLH:  Q789  
Cite this article:

XIA Ya-mu, LI Chen-chen. Genetic Modification and High Expression of Cyclodextrin Glycosyltransferase. China Biotechnology, 2015, 35(2): 105-110.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20150216     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I2/105


[1] Bart A, van der Veen, Gert-Jan W M, et al. The three transglycosylation reactions catalyzed by cyclodextrin glycosyltransferase from Bacillus ciculans (strain 251) proceed via different kinetic mechanisms.European Journal of Biochemistry, 2000, 267(3):658-665.

[2] Ruizhi Han, Jianghua Li, Hyun-dong Shin, et al. Recent advances in discovery, heterologous expression, and molecular engineering of cyclodextrin glycosyltransferase for versatile applications. Biotechnology Advances, 2014, 32(2):415-428.

[3] Biwer G, Antranikian G, Heinzle E. Enzymatic production of cyclodextrins. Appl Microbiol Biotechnol, 2002, (59):609-617.

[4] Lee S H, Kim Y W, Lee S Y, et al. Modulation of cyclizing activity and thermostability of cyclodextrin glucanotransferase and its application as an antistaling enzyme. J Agric Food Chem, 2002, 50:1411-1415.

[5] Go Y H, Kim T K, Lee K W, et al. Functional characteristics of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. BL-31 highly specific for intermolecular transglycosylation of bioflavonoids. Microbiol Biotechnol, 2007, 17:1550-1553.

[6] Atanasova N, Petrova P, Ivanova V, et al. Isolation of novel alkaliphilic Bacillus strains for cyclodextrin glucanotransferase production. Appl Biochem Biotechnol, 2008, 149:155-167.

[7] Kitayska T, Petrova P, Ivanova V, et al. Purification and properties of a new thermostable cyclodextrin glucanotransferase from Bacillus pseudalcaliphilus 8SB. Appl Biochem Biotechnol, 2011, 165:1285-1295.

[8] Jemli S, Ben Messaoud E, Ayadi-Zouari D, et al. A β-cyclodextrin glycosyltransferase from a newly isolated Paenibacillus pabuli US132 strain: Purification, properties and potential use in bread-making. Biochemical Engineering Journal, 2007, 34:44-50.

[9] 孙涛,江波,潘蓓蕾.环糊精葡萄糖基转移酶的生产及其在食品工业中的应用. 食品工业科技, 2012, 33(16):387-393. Sun T, Jiang B, Pan B L. Production of cyclodextrin glucanotransferases and their applications in food industry. Science and Technology of Food Industry, 2012, 33(16): 387-393.

[10] Li Z, et al. Mutations enhance β-cyclodextrin specificity of cyclodextrin glycosyltransferase from Bacillus circulans. Carbohydr. Polym., 2014, 108, 112-117.

[11] 谢婷,岳洋,宋炳红,等.α-环糊精糖基转移酶活性区域突变提高选择形成γ-环糊精能力.生物工程学报,2013,29(9):1234-1244. Xie T, Yue Y, Song B H, et al. Increasing of product specificity of γ-cyclodextrin by mutating the active domain of α-cyclodextrin glucanotransferase from Paenibacillus macerans sp.602-1. Chinese Journal of Biotechnology, 2013, 29(9): 1234-1244.

[12] Yamamoto I, Muto N, Murakami K, et al. Collagen synthesis in human skin fibroblasts is stimulated by a stable form of ascorbate 2-O-alpha-D-glucopyranosyl-L-ascorbic acid. Nutrition, 1992, 122(4): 871-877.

[13] 许乔艳,韩瑞枝,李江华,等.亚位点+1处突变提高软化类芽胞杆菌环糊精糖基转移酶底物麦芽糊精特异性.生物工程学报,2014,30(1):98-108. Xu Q Y, Han R Z, Li J H, et al. Improving maltodextrin specificity by site-saturation engineering of subsite +1 in cyclodextrin glycosyltransferase from Paenibacillus macerans. Chinese Journal of Biotechnology, 2014, 30(1): 98-108.

[14] Van der Veen B A, Leemhuis H, Kralj S, et al.Hydrophobic amino acid residues in the acceptor binding site are main determinants for reaction mechanism and specificity of cyclodextrin-glycosyl transferase. Biol Chem, 2001, 276:44557-44562.

[15] Leemhuis H, Rozeboom H J, Wilbrink M, et al. Conversion of cyclodextrin glycosyltransferase into a starch hydrolase by directed evolution: The role of alanine 230 in acceptor subsite +1. Biochemistry, 2003, 42: 7518-7526.

[16] 吴敬, 吴丹, 郑贤良. 不同宿主来源的α-环糊精葡萄糖基转移酶分离纯化及化学修饰提高其热稳定性. 食品与生物技术学报, 2013, 32(3):287-292. W J, W D, Zheng X L. Purification of α-cyclodextrin glycosyltransferase and study of thermal stability improvement by chemical modification. Journal of Food Science and Biotechnology, 2013, 32(3): 287-292.

[17] Leemhuis H, Rozeboom H, Dijkstra B. Improved thermostability of Bacillus circulans cyclodextrin glycosyltransferase by the introduction of a saltbridge. Protein, 2004, 54(1):128-134.

[18] Li C, Huang M, Gu Z, et al. Nanosilica Sol leads to further increase in polyethylene glycol (PEG) 1000-enhanced thermostability of β-cyclodextrin glycosyltransferase from Bacillus circulans. Agricultural and Food Chemistry, 2014, 62: 2919-2924.

[19] Wang Z, Qi Q, Wang PG. Engineering of cyclodextrin glucanotransferase on the cell surface of Saccharomyces cerevisiaefor improved cyclodextrin production. Appl Environ Microbiol, 2006, 72:1873-1877.

[20] Ayadi D Z, Kammoun R, Jemli S, et al. Excretory overexpression of Paenibacillus pabuli US132 cyclodextrin glucanotransferase (CGTase) in Escherichia coli: gene cloning and optimization of the culture conditions using experimental design. Biologia, 2011, 66:945-953.

[21] Liu H, Li J, Du G, et al. Enhanced production of α-cyclodextrin glycosyltransferase in Escherichia coliby systematic codon usage optimization. Ind Microbiol Biotechnol, 2012, 39:1841-1849.

[22] Jeang C L, Lin D G, Hsieh S H. Characterization of cyclodextrin glycosyltransferase of the same gene expressed from Bacillus macerans, Bacillus subtilis, and Escherichia coli. Journal of Agricultural and Food Chemistry, 2005, 53(16):6301-6304.

[23] Charoensakdi R, Murakami S, Aoki K, Rimphanitchayakit V, Limpaseni T. Cloning and expression of cyclodextrin glycosyltransferase gene from Paenibacillus sp. T16 isolated from hot spring soil in northern Thailand. Biochem Mol Biol, 2007, 40:333-340.

[24] Wang L, Wu D, Chen J, et al. Enhanced production of γ-cyclodextrin by optimization of reaction of γ-cyclodextrin glycosyltransferase as well as synchronous use of isoamylase. Food Chemistry, 2013, 141:3072-3076.

[25] Ng H S, Ooi C W, Mokhtar M N, et al. Extractive bioconversion of cyclodextrins by Bacillus cereus cyclodextrin glycosyltransferase in aqueous two-phase system. Bioresour Technol,2013, 142:723-726.

[26] 张智维,雷新辉,张海群. 紫外线和亚硝酸诱变选育高产α-环糊精葡萄糖基转移酶菌株. 粮油食品科技,2013, 21(5): 101-104. Zhang Z W, Lei X H, Zhang H Q. Breeding of high yield α-cyclodextrin glycosyltransferase strains by UV and nitrite mutagenesis. Science and Technology of Cereals, Oils and Foods, 2013, 21(5): 101-104.

[27] Kelly R M, Leemhuis H, Rozeboom H J, et al.Elimination of competing hydrolysis and coupling side reactions of a cyclodextrin glucanotransferase by directed evolution. Biochem J, 2008,413:517-525.

[28] Han R, Li J, Shin H D, et al. Carbohydrate-binding module-cyclodextrin glycosyltransferase fusion enables efficient synthesis of 2-o-d-glucopyranosyl-L-ascorbic acid with soluble starch as the glycosyl donor. Appl Environ Microbiol, 2013, 79:3234-3240.

[29] Kaulpiboon J, Pongsawasdi P, Zimmermann W. Molecular imprinting of cyclodextrin glycosyltransferases from Paenibacillus sp. A11 and Bacillus macerans with γ-cyclodextrin. FEBS, 2007, 274:1001-1010.

[1] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[2] WEI Wei,CHANG Bao-gen,WANG Ying,LU Fu-ping,LIU Fu-feng. Heterologous Expression, Purification and Aggregation Characterization of Tau Core Fragment 306-378[J]. China Biotechnology, 2020, 40(5): 22-29.
[3] ZHAO Xiao-yan,CHEN Yun-da,ZHANG Ya-qian,WU Xiao-yu,WANG Fei,CHEN Jin-yin. Site-directed Mutagenesis Improves the Thermostability of Trehalose Synthase TreS II from Myxococcus sp.V11[J]. China Biotechnology, 2020, 40(3): 79-87.
[4] SU Yong-jun,HU Die,HU Bo-chun,LI Chuang,WEN Zheng,ZHANG Chen,WU Min-chen. Improving the Enantioselectivity of an Epoxide Hydrolase towards p-Methylphenyl Glycidyl Ether by Site-directed Mutagenesis[J]. China Biotechnology, 2020, 40(3): 88-95.
[5] Ting-ting KAN,Xun-cheng ZONG,Yong-jun SU,Ting-ting WANG,Chuang LI,Die HU,Min-chen WU. Site-directed Mutagenesis of PvEH1 to Improve Its Catalytic Properties towards ortho-Methylphenyl Glycidyl Ether[J]. China Biotechnology, 2019, 39(6): 9-16.
[6] SHI Chao-shuo,LI Deng-ke,CAO Xue,YUAN Hang,ZHANG Yu-wen,YU Jiang-yue,LU Fu-ping LI Yu. The Effect on Heterologous Expression of Alkaline Protease AprE by Two Different Promoter and Combinatorial[J]. China Biotechnology, 2019, 39(10): 17-23.
[7] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[8] Hao-yi MENG,Dan-yang LI,Zheng-yang SUN,Zhao-yong YANG,Zhi-fei ZHANG,Li-jie YUAN. Substrate-binding Site of Ubiquitous Mitochondrial Creatine Kinase from Homo sapiens[J]. China Biotechnology, 2018, 38(5): 24-32.
[9] LI Bo, LIANG Nan, LIU Duo, LIU Hong, WANG Ying, XIAO Wen-hai, YAO Ming-dong, YUAN Ying-jin. Metabolic Engineering of Saccharomyces cerevisiae for Production of 8-Dimenthylally Naringenin[J]. China Biotechnology, 2017, 37(9): 71-81.
[10] LI Dan, HUANG He. Heterologous Expression of Nanobodies:a Recent Progress[J]. China Biotechnology, 2017, 37(8): 84-95.
[11] LI Xue-qing, YUAN Feng-jiau, CHENG Jian-qing, DONG Yun-hai, LI Jian-fang, WU Min-chen. Effect of Amino Acid H321 on the Enzymatic Properties of Hybrid β-Mannanase AuMan5Aloop[J]. China Biotechnology, 2017, 37(2): 48-53.
[12] YU Xiao-chun, MA Shi-liang. Advances in Research of Aspergillus oryzae as a Host of Heterologous Protein Expression[J]. China Biotechnology, 2016, 36(9): 94-100.
[13] WU Xue-long, YANG Xiao-hui, WANG Jun-qing, WANG Rui-ming. Expression and Characteristics of Apis mellifera NADPH-cytochrome P450 Reductase Gene in Escherichia coli[J]. China Biotechnology, 2016, 36(12): 28-35.
[14] WU Qin, HU Die, LI Xue-qing, YUAN Feng-jiao, LI Jian-fang, WU Min-chen. Site-directed Mutagenesis of Y13F to Improve the Thermotolerance of Mesophilic Xylanase from Aspergillus oryzae[J]. China Biotechnology, 2016, 36(12): 36-41.
[15] GUO Yong hua, CHEN Ji chen, CAI Hai song, CHEN Long jun, LIN Xin jian. Saturated Mutation Effects on Catalytic Efficiency and Product Specificity of Starch Binding Site N623 of Cyclodextrin Glucanotransferase from Geobacillus sp. CHB1[J]. China Biotechnology, 2016, 36(11): 30-38.