Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (6): 9-16    DOI: 10.13523/j.cb.20190602
    
Site-directed Mutagenesis of PvEH1 to Improve Its Catalytic Properties towards ortho-Methylphenyl Glycidyl Ether
Ting-ting KAN1,Xun-cheng ZONG2,Yong-jun SU1,Ting-ting WANG1,Chuang LI2,Die HU3,**(),Min-chen WU3,**()
1 School of Pharmaceutical Science,Jiangnan University,Wuxi 214122, China
2 School of Biotechnology,Jiangnan University,Wuxi 214122, China
3 Wuxi School of Medicine,Jiangnan University, Wuxi 214122, China
Download: HTML   PDF(838KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Epoxide hydrolases can catalyze the kinetic resolution of racemic epoxides,retaining enantiopure single enantiomers of epoxides. The catalytic properties of Phaseolus vulgaris epoxide hydrolase (PvEH1) towards phenyl glycidyl ether and its methyl derivates were assayed.Seven residues of PvEH1 were then selected for site-directed mutagenesis based on the results of molecular docking simulation and multiple sequence alignment,followed by single-site and combinatorial mutagenesis to obtain mutants possessing enhanced catalytic properties towards ortho-methylphenyl glycidyl ether (1a). The substrate spectrum analysis showed that PvEH1 displayed both the highest activity (157.2U/g wet cell) and enantioselectivity (E=5.6)towards 1a.Thus, 1a was selected as the model substrate.Among the constructed seven E.coli transformants expressing single-site mutant of PvEH1,E.coli/pveh1 L105I and E. coli/pveh1 V106I exhibited notably improved EH activity and E value.Compared with E.coli/pveh1, the EH activity and E value of E.coli/pveh1 L105I/V106I were improved by 2.1 times and 50%, respectively.Additionally,the specific activity (17.6U/mg) and the catalytic efficiency [17.7L/(mmol·s)]of purified PvEH1 L105I/V106I were 1.5-and 2.1-fold those of PvEH1. SDS-PAGE analysis indicated that the soluble expression level of target protein was enhanced by the combinatorial mutagenesis.The kinetic resolution of 100mmol/L 1a by E.coli/pveh1 L105I/V106I whole cells afforded (R)-1a (ee>96%)with 31.2% yield and a space-time yield of 5.12g/(L·h). Therefore, the superior enzymatic properties will make E.coli/pveh1 L105I/V106I a promising biocatalyst for the preparation of optically pure (R)-1a.



Key wordsEpoxide hydrolase      Site-directed mutagenesis      Catalytic activity      Kinetic resolution      Ortho-methylphenyl glycidyl ether     
Received: 17 November 2018      Published: 12 July 2019
ZTFLH:  Q814.9  
Corresponding Authors: Die HU,Min-chen WU     E-mail: Butterflystudy@163.com;biowmc@126.com
Cite this article:

Ting-ting KAN,Xun-cheng ZONG,Yong-jun SU,Ting-ting WANG,Chuang LI,Die HU,Min-chen WU. Site-directed Mutagenesis of PvEH1 to Improve Its Catalytic Properties towards ortho-Methylphenyl Glycidyl Ether. China Biotechnology, 2019, 39(6): 9-16.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190602     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I6/9

Epoxides/diols* Mobile phase Molar extinction
coefficients (ε)
Retention time (min)
(R)-/(S)-epoxide (R)-/(S)-diol
1a/1b 8:2 0.965 3 6.521/8.019 8.914/9.873
2a/2b 8:2 0.887 1 6.845/10.059 8.423/16.341
3a/3b 9:1 1.163 8 7.368/8.701 15.130/21.799
4a/4b 8:2 0.938 1 7.511/10.791 8.951/15.675
Table 1 Analysis conditions
Primer name Primer sequence (5'→3')
L105I-F CCATGATTGGGGAGCGATTGTAGGATGGTAC
V106I-F ATGATTGGGGAGCACTAATCGGATGGTACACA
M129L-F CTCAGCGTCCCTTTCCTGCCCAGAAACCCA
P137T-F CTAAGGTGAAGACAGTTGATGCCATGCG
M175I-F GAAGCAATCAAGAACATTCTGACAAGTAGGAGACC
L237M-F CTATAGAAATATGAACCTGAACTGGGAGC
I265M-F TACAGGCGATTTGGATATGGTTCACAC
L105I/V106I-F ATGATTGGGGAGCAATAATCGGATGGTACACA
T7-terminatorprimer GCTAGTTATTGCTCAGCGG
Table 2 Sequences of primers for mutagenesis
Table 3 The activity and enantioselectivity of PvEH1
Fig.1 Molecular docking simulation and multiple sequencealignment (a)The locally magnified 3-D configuration of PvEH1 docking with (S)-1a (b) Spatial locations of mutation sites (c) Multiple sequence alignment of PvEH1 with three plant-derived EHs.Thirty residues of PvEH1 in proximity to (S)-1a within 6? are marked, among which seven ones selected for site-directed mutagenesis are highlighted in triangles
Enzyme Activity (U/g wet cell) Relative activity(%) E value
PvEH1 157.2±3.6 100 5.6
PvEH1L105I 320.4±8.6 203.8 6.8
PvEH1V106I 234.8±5.9 149.4 7.0
PvEH1M129L 153.2±4.6 97.5 5.7
PvEH1P137T 10.4±0.5 6.6 2.5
PvEH1M175I 170.3±4.3 108.3 5.3
PvEH1L237M 122.8±3.4 78.1 6.3
PvEH1I265M 74.6±1.8 47.5 6.0
PvEH1L105I/V106I 493.8±9.8 314.1 8.3
Table 4 Catalytic properties of mutants towards 1a
Fig.2 SDS-PAGE analysis of the purified PvEH1 and PvEH1L105I/V106I Lane M: Protein marker; Lane 1: Supernatant extract of E.coli/pveh1; Lane 2:Supernatant extract of E.coli/pveh1L105I/V106I;Lane 3: Purified PvEH1; Lane 4: Purified PvEH1L105I/V106I
Enzyme kcat (1/s) Km (mmol/L) kcat/Km [L/
(mmol·s)]
PvEH1 7.4 0.9 8.3
PvEH1L105I/V106I 10.7 0.6 17.7
Table 5 The kinetic parameters of PvEH1 and PvEH1L105I/V106I
1a(mmol/L) Time (h) c (%) ee (%) Yield(%)
50 3 90.2 > 99 9.8
80 3 86.1 > 99 13.8
100 3 80.0 > 99 19.9
120 3 74.8 80.4 22.7
Table 6 Kinetic resolution of 1a at high concentrations using E.coli/pveh1L105I/V106I
Fig.3 Hydrolysis progress curves of 1a by E.coli/pveh1L105I/V106I
[1]   Woo J H, Kang K M, Kwon T H , et al. Isolation, identification and characterization of marine bacteria exhibiting complementary enantioselective epoxide hydrolase activity for preparing chiral chlorinated styrene oxide derivatives. J Ind Eng Chem, 2015,28:225-228.
doi: 10.1016/j.jiec.2015.02.018
[2]   Wohlgemuth R, Archelas A, Kotik M . Epoxide hydrolases and their application in organic synthesis. Curr Org Chem, 2012,16(4):451-482.
doi: 10.2174/138527212799499840
[3]   Mateo C, Solares L F . Improvement of the epoxide hydrolase properties for the enantioselective hydrolysis of epoxides. Curr Org Chem, 2013,17(7):744-755.
doi: 10.2174/1385272811317070008
[4]   Bala N, Chimni S S . Recent developments in the asymmetric hydrolytic ring opening of epoxides catalysed by microbial epoxide hydrolase. Tetrahedron: Asymmetry, 2010,21(24):2879-2898.
doi: 10.1016/j.tetasy.2010.11.013
[5]   Wu S, Li A, Chin Y S , et al. Enantioselective hydrolysis of racemic and meso-epoxides with recombinant Escherichia coli expressing epoxide hydrolase from Sphingomonas sp. HXN-200: preparation of epoxides and vicinal diols in high ee and high concentration. ACS Catal, 2013,3(4):752-759.
doi: 10.1021/cs300804v
[6]   Bisi A, Rampa A, Budriesi R , et al. Cardiovascular hybrid drugs: new benzazepinone derivatives as bradycardic agents endowed with selective β1-non-competitive antagonism. Bioorg Med Chem, 2003,11(7):1353-1361.
doi: 10.1016/S0968-0896(02)00621-1
[7]   Li C, Hu D, Zong X C , et al. Asymmetric hydrolysis of styrene oxide by PvEH2, a novel Phaseolus vulgaris, epoxide hydrolase with extremely high enantioselectivity and regioselectivity. Catal Commun, 2017,102:57-61.
doi: 10.1016/j.catcom.2017.08.026
[8]   Kong X D, Yuan S, Li L , et al. Engineering of an epoxide hydrolase for efficient bioresolution of bulky pharmaco substrates. PNAS, 2014,111(44):15717-15722.
doi: 10.1073/pnas.1404915111
[9]   叶慧华, 胡蝶, 李闯 , 等. 新型菜豆环氧化物水解酶的异源表达及对映归一性催化特性. 中国生物工程杂志, 2016,36(10):21-27.
doi: 10.13523/j.cb.20161004
[9]   Ye H H, Hu D, Li C , et al. Expression of a novel epoxide hydrolase from Phaseolus vulgaris and its enantioconvergent catalytic performance. China Biotechnology, 2016,36(10):21-27.
doi: 10.13523/j.cb.20161004
[10]   王瑞, 许耀辉, 王克伟 , 等. 环氧化物水解酶PvEH3的表达及手性邻二醇的合成. 化工进展, 2018,37(5):1933-1939.
[10]   Wang R, Xu Y H, Wang K W , et al. Expression of PvEH3,a Phaseolus vulgaris epoxide hydrolase,and synthesis of chiral vicinal diols. Chemical Industry Engineering Progress, 2018,37(5):1933-1939.
[11]   Hu D, Tang C D, Li C , et al. Stereoselective hydrolysis of epoxides by reVrEH3, a novel Vigna radiata epoxide hydrolase with high enantioselectivity or high and complementary regioselectivity. J Agric Food Chem, 2017,65(45):9861-9870.
doi: 10.1021/acs.jafc.7b03804
[12]   Mowbray S L, Elfström L T, Ahlgren K M , et al. X-ray structure of potato epoxide hydrolase sheds light on substrate specificity in plant enzymes. Protein Sci, 2006,15(7):1628-1637.
doi: 10.1110/(ISSN)1469-896X
[13]   舒群峰, 徐美娟, 李静 , 等. 钝齿棒杆菌中异源表达N-乙酰鸟氨酸脱乙酰基酶合成L-鸟氨酸的研究. 中国生物工程杂志, 2018,38(7):29-39.
[13]   Shu Q F, Xu M J, Li J , et al. Producing L-ornithine by heterologous expression of N-acetyl-L-ornithinedeacetylase in Corynebacterium crenatum. China Biotechnology, 2018,38(7):29-39.
[14]   石小玲, 阚婷婷, 李闯 , 等. 菜豆环氧化物水解酶的表达及其催化特性研究. 微生物学通报, 2018,45(4):797-804.
[14]   Shi X L, Kan T T, Li C , et al. Expression and characterization of Phaseolus vulgaris epoxide hydrolase. Microbiology China, 2018,45(4):797-804.
[15]   Wu K, Wang H, Sun H , et al. Efficient kinetic resolution of phenyl glycidyl ether by a novel epoxide hydrolase from Tsukamurella paurometabola. Appl Microbiol Biotechnol, 2015,99(22):9511-9521.
doi: 10.1007/s00253-015-6716-9
[16]   Reetz M T, Bocola M, Wang L W , et al. Directed evolution of an enantioselective epoxide hydrolase: uncovering the source of enantioselectivity at each evolutionary stage. J Am Chem Soc, 2009,131(21):7334-7343.
doi: 10.1021/ja809673d
[17]   Reetz M T, Torre C, Eipper A , et al. Enhancing the enantioselectivity of an epoxide hydrolase by directed evolution. Org Lett, 2004,6(2):177-180.
doi: 10.1021/ol035898m
[18]   Zou S P, Zheng Y G, Wu Q , et al. Enhanced catalytic efficiency and enantioselectivity of epoxide hydrolase from Agrobacterium radiobacter AD1 by iterative saturation mutagenesis for (R)-epichlorohydrin synthesis. Appl Microbiol Biotechnol, 2018,102(2):733-742.
doi: 10.1007/s00253-017-8634-5
[19]   Li C, Zhao J, Hu D , et al. Multiple site-directed mutagenesis of a Phaseolus vulgaris epoxide hydrolase to improve its catalytic performance towards p-chlorostyrene oxide based on the computer-aided re-design. Int J Biol Macromol, 2019,121:326-332.
doi: 10.1016/j.ijbiomac.2018.10.030
[20]   Choi W J, Huh E C, Park H J , et al. Kinetic resolution for optically active epoxides by microbial enantioselective hydrolysis. Biotechnol Tech, 1998,12(3):225-228.
doi: 10.1023/A:1008825508904
[21]   Xu Y, Xu J H, Pan J , et al. Biocatalytic resolution of glycidyl aryl ethers by Trichosporon loubierii: cell/substrate ratio influences the optical purity of (R)-epoxides. Biotechnol Lett, 2004,26(15):1217-1221.
doi: 10.1023/B:BILE.0000036598.35494.de
[1] ZHAO Xiao-yan,CHEN Yun-da,ZHANG Ya-qian,WU Xiao-yu,WANG Fei,CHEN Jin-yin. Site-directed Mutagenesis Improves the Thermostability of Trehalose Synthase TreS II from Myxococcus sp.V11[J]. China Biotechnology, 2020, 40(3): 79-87.
[2] SU Yong-jun,HU Die,HU Bo-chun,LI Chuang,WEN Zheng,ZHANG Chen,WU Min-chen. Improving the Enantioselectivity of an Epoxide Hydrolase towards p-Methylphenyl Glycidyl Ether by Site-directed Mutagenesis[J]. China Biotechnology, 2020, 40(3): 88-95.
[3] Qian-qian GUO,Deng-ke GAO,Xiao-tao CHENG,Fu-ping LU,Tanokura Masaru,Hui-min QIN. Heterologous Expression, Purification and Enzymatic Characterization of Cholesterol Oxidase PsCO4[J]. China Biotechnology, 2018, 38(6): 34-42.
[4] Hao-yi MENG,Dan-yang LI,Zheng-yang SUN,Zhao-yong YANG,Zhi-fei ZHANG,Li-jie YUAN. Substrate-binding Site of Ubiquitous Mitochondrial Creatine Kinase from Homo sapiens[J]. China Biotechnology, 2018, 38(5): 24-32.
[5] LI Xue-qing, YUAN Feng-jiau, CHENG Jian-qing, DONG Yun-hai, LI Jian-fang, WU Min-chen. Effect of Amino Acid H321 on the Enzymatic Properties of Hybrid β-Mannanase AuMan5Aloop[J]. China Biotechnology, 2017, 37(2): 48-53.
[6] WU Qin, HU Die, LI Xue-qing, YUAN Feng-jiao, LI Jian-fang, WU Min-chen. Site-directed Mutagenesis of Y13F to Improve the Thermotolerance of Mesophilic Xylanase from Aspergillus oryzae[J]. China Biotechnology, 2016, 36(12): 36-41.
[7] XIANG Mian, ZHU Jian-quan, YU Ji-hua, LI Yang-yang, LI Juan-juan, LIU Zu-bi, WANG Wan-jun, LIAO Hai, ZHOU Jia-yu. The Site-directed Mutation of Key Residues and the Analysis about Inhibitory Activity of Cassia obtusifolia Trypsin Inhibitor[J]. China Biotechnology, 2016, 36(10): 15-20.
[8] YE Hui-hua, HU Die, LI Chuang, CHENG Jian-qing, DENG Chao, WU Min-chen. Expression of a Novel Epoxide Hydrolase from Phaseolus vulgaris and Its Enantioconvergent Catalytic Performance[J]. China Biotechnology, 2016, 36(10): 21-27.
[9] GONG Yan-hui, MA San-mei, ZHANG Yun, WANG Yong-fei, HU Yun-feng. Functional Characterization of a Novel Microbial Psychrophilic Lipase and Its Utilization in Stereo-Selective Biocatalysis[J]. China Biotechnology, 2016, 36(10): 35-44.
[10] LI Yao-yao, BI Jing, WANG Yi-hong, QIN Yun-he, ZHANG Xue-lian. Lysine-322 Acetylation Negatively Regulates Isocitrate Lyase of Mycobacterium tuberculosis[J]. China Biotechnology, 2015, 35(6): 8-13.
[11] GAO Rui-ping, CHENG Long-bin, LI Zhen-qiu. A Simple and Rapid Single Primer PCR Method for Site-directed Mutagenesis[J]. China Biotechnology, 2015, 35(5): 61-65.
[12] XIA Ya-mu, LI Chen-chen. Genetic Modification and High Expression of Cyclodextrin Glycosyltransferase[J]. China Biotechnology, 2015, 35(2): 105-110.
[13] RUAN Jing-jun, YANG Yi, TANG Zi-zhong, CHEN Hui. Study on Tartary Buckwheat Trypsin Inhibitor Activity Sites by Using Site-directed Mutagenesis[J]. China Biotechnology, 2015, 35(12): 30-36.
[14] PEI Zhi-yong, HOU Xian-hui, GUI Xiao-ke, CHEN Yu-bao. Primer Spanner: A Web-based Platform to Design PCR Primers for High Efficient Site-directed Mutagenesis[J]. China Biotechnology, 2015, 35(10): 53-58.
[15] TIAN Shuo, YAO Wen-bin, XU Chen. Construction and Biological Assay of Integrated Interferon Mutant IIFN/165S[J]. China Biotechnology, 2013, 33(7): 8-12.