Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (5): 24-32    DOI: 10.13523/j.cb.20180504
    
Substrate-binding Site of Ubiquitous Mitochondrial Creatine Kinase from Homo sapiens
Hao-yi MENG1,Dan-yang LI3,Zheng-yang SUN1,Zhao-yong YANG3,Zhi-fei ZHANG2,***(),Li-jie YUAN1,***()
1 Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases,School of Basic Medical Science, North China University of Science and Technology, Tangshan 063210,China
2 School of Pharmacy, North China University of Science and Technology, Tangshan 063210,China
3 Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100050,China
Download: HTML   PDF(1989KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To investigate the function of the key residues in the binding site of human uMtCK onto substrate creatine (Cr) and ATP, nine mutants of human uMtCK were constructed by using site-directed mutagenesis and analyzed by enzyme kinetics, circular dichroism spectra and protein structural simulation. The K m Cr value of Q313A and R336A and K m ATP values of R125A and R287A were 2.6, 2.9, 3.2 and 4.2 folds higher than that of the wild-type (WT), and the kcat values of Q313A, R125A, R287A and R336A 19%, 55%, 72% and 38% lower than that of WT, respectively. Meanwhile, no significant changes of circular dichroism spectra of the mutants were observed compared with WT. The structure model analysis indicated that the mutations altered the hydrogen bonds between the key amino acid residues and substrates, thus creating an unfavorable local environment for substrate binding and catalysis, as reflected by the increased Km and decreased kcat of mutants, consequently inactivation of human uMtCK.



Key wordsCreatine kinase      Site-directed mutagenesis      Enzyme kinetics      Structural simulation     
Received: 17 December 2017      Published: 05 June 2018
ZTFLH:  Q55  
Corresponding Authors: Zhi-fei ZHANG,Li-jie YUAN     E-mail: zhifeiz@outlook.com;yuanlijie1970@163.com
Cite this article:

Hao-yi MENG,Dan-yang LI,Zheng-yang SUN,Zhao-yong YANG,Zhi-fei ZHANG,Li-jie YUAN. Substrate-binding Site of Ubiquitous Mitochondrial Creatine Kinase from Homo sapiens. China Biotechnology, 2018, 38(5): 24-32.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180504     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I5/24

Fig.1 The overall structure of uMtCK a) The crystal structure of uMtCK is formed by an octameric fashion (b)N-terminal domain (residues 1-95, red), C-terminal domain (residues 120-379, green), linker region (residues 96-119, yellow)
引物名称 引物序列 (5' → 3') 引物名称 引物序列 (5' → 3')
ck-R125A-F GTCCTGAGCTCTGCCGTGCGTACCG ck-Q313A-F CCTGCGCCTGGCCAAGCGTGGTAC
ck-R125A-R CGGTACGCACGGCAGAGCTCAGGAC ck-Q313A-R GTACCACGCTTGGCCAGGCGCAGG
ck-R127A-F GCTCTCGCGTGGCTACCGGTCGTAG ck-R315A-F GCCTGCAAAAGGCAGGTACCGGCGG
ck-R127A-R CTACGACCGGTAGCCACGCGAGAGC ck-R315A-R CCGCCGGTACCTGCCTTTTGCAGGC
ck-E227A-F CTGGGTGAACGAAGCAGATCACACC ck-V320A-F GGTACCGGCGGTGCCGACACCGCAG
ck-E227A-R GGTGTGATCTGCTTCGTTCACCCAG ck-V320A-R CTGCGGTGTCGGCACCGCCGGTACC
ck-R231A-F GAAGATCACACCGCCGTTATCTCC ck-D330A-F CGGTGTGTTCGCCATCAGTAACCTG
ck-R231A-R GGAGATAACGGCGGTGTGATCTTC ck-D330A-R CAGGTTACTGATGGCGAACACACCG
ck-R287A-F TACGGGTCTGGCTGCAGGTGTGC ck-R336A-F GTAACCTGGACGCACTGGGCAAATC
ck-R287A-R GCACACCTGCAGCCAGACCCGTA ck-R336A-R GATTTGCCCAGTGCGTCCAGGTTAC
Table 1 Primer used for construction of site-directed mutations
Fig.2 Amino acid sequence alignment of CKs The residues of uMtCK interacting with the binding site of the creatine and ATP are marked with stars
Fig.3 SDS-PAGE analysis of purified recombinant uMtCK and mutants M: Protein marker; 1-11: uMtCK, uMtCKR125A, uMtCKR127A, uMtCKE227A, uMtCKR231A, uMtCKR287A, uMtCKQ313A, uMtCKV320A, uMtCKR315A, uMtCKD330A, uMtCKR336A
Fig.4 Effect of optimum temperature and pH on the acitivity of uMtCK and mutants
KmCr(mmol/L) KmATP(mmol/L) kcat(/s)
uMtCK 11.2±0.5 1.4±0.2 47±1.7
R125A 16.2±0.9 4.5±0.4 13±0.9
R287A 13.7±1.5 5.9±1.2 29±2.2
Q313A 29.4±0.7 1.5±0.5 38±3.1
R336A 32.4±2.1 3.7±0.2 21±1.8
Table 2 Kinetic parameters obtained for uMtCK and mutants
WT R125A R127A E227A R231A R287A Q313A R315A V320A D330A R336A
Helix 25.1% 22.1% 23.7% 22.3% 24.9% 24.6% 25.2% 27.1% 21.3% 25.1% 23.0%
Antiparallel 12.2% 17.3% 15.0% 17.2% 13.0% 14.0% 12.7% 10.7% 19.0% 12.2% 15.4%
Parallel 6.5% 6.2% 6.4% 6.2% 6.6% 6.5% 6.5% 6.7% 6.0% 6.5% 6.2%
Beta-turn 16.4% 17.3% 16.8% 17.2% 16.4% 16.7% 16.4% 16.0% 17.7% 16.4% 17.1%
Rndm coil 36.6% 36.8% 37.4% 37.2% 37.5% 36.7% 36.8% 36.6% 35.9% 36.6% 36.3%
Table 3 The content of secondary structure in uMtCK and mutants
Fig.5 Circular dichroism of uMtCK and mutants
Fig.6 A close-up view of creatine binding pocket and ATP binding site Creatine (blue), ATP (red), the structural figure were generated with PyMOL (http://www.pymol.org)
Fig.7 Structural analysis of the uMtCK and mutants (a),(b) The models of the creatine and its surroundings (c), (d) The models of the ATP and its surroundings The entire protein is shown in cartoon. ATP, creatine, and residues interacting with them are displayed in stick and labeled. The dotted lines indicate hydrogen-bonding network around the residue at creatine or ATP. The structural figures were generated with PyMOL (http://www.pymol.org)
[1]   Adams J E, Abendschein D R, Jaffe A S . Biochemical markers of myocardial injury. is MB creatine kinase the choice for the 1990s. Circulation, 1993,88(2):750-763.
doi: 10.1161/01.CIR.88.2.750
[2]   Pepys M B, Hawkins P N, Booth D R , et al. Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature, 1993,362(6420):553.
doi: 10.1038/362553a0
[3]   Thomas P J, Qu B H, Pedersen P L . Defective protein folding as a basis of human disease. Trends in Biochemical Sciences, 1995,20(11):456-459.
doi: 10.1016/S0968-0004(00)89100-8 pmid: 8578588
[4]   Blacklow S C, Kim P S . Protein folding and calcium binding defects arising from familial hypercholesterolemia mutations of the LDL receptor. Nature Structural & Molecular Biology, 1996,3(9):758-762.
doi: 10.1038/nsb0996-758 pmid: 8784348
[5]   Wallimann T, Wyss M, Brdiczka D , et al. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochemical Journal, 1992,281(Pt 1):21.
[6]   Armbruster D A . The genesis and clinical significance of creatine kinase isoforms. Laboratory Medicine, 1991,22(5):325-334.
doi: 10.1093/labmed/22.5.325
[7]   Jacobus W E, Moreadith R W, Vandegaer K M . Control of heart oxidative phosphorylation by creatine kinase in mitochondrial membranes. Annals of the New York Academy of Sciences, 1983,414(1):73-89.
doi: 10.1111/j.1749-6632.1983.tb31676.x pmid: 6584077
[8]   Amamoto R, Uchiumi T, Yagi M , et al. The expression of ubiquitous mitochondrial creatine kinase is downregulated as prostate cancer progression. Journal of Cancer, 2016,7(1):50.
doi: 10.7150/jca.13207 pmid: 4679381
[9]   Qian X L, Li Y Q, Gu F , et al. Overexpression of ubiquitous mitochondrial creatine kinase (uMtCK) accelerates tumor growth by inhibiting apoptosis of breast cancer cells and is associated with a poor prognosis in breast cancer patients. Biochemical and Biophysical Research Communications, 2012,427(1):60-66.
doi: 10.1016/j.bbrc.2012.08.147
[10]   Mühlebach S M, Gross M, Wirz T , et al. Sequence homology and structure predictions of the creatine kinase isoenzymes. Molecular and Cellular Biochemistry, 1994,133(1):245-262.
doi: 10.1007/BF01267958 pmid: 7808457
[11]   Eder M, Fritz-Wolf K, Kabsch W , et al. Crystal structure of human ubiquitous mitochondrial creatine kinase. Proteins: Structure, Function, and Bioinformatics, 2000,39(3):216-225.
[12]   Rao J K M, Bujacz G, Wlodawer A . Crystal structure of rabbit muscle creatine kinase. FEBS Letters, 1998,439(1):133-137.
doi: 10.1016/S0014-5793(98)01355-6
[13]   Fritz-Wolf K, Schnyder T, Wallimann T , et al. Structure of mitochondrial creatine kinase L. Nature, 1996,381(6580):341.
doi: 10.1038/381341a0
[14]   Eder M, Schlattner U, Wallimann T , et al. Crystal structure of brain-type creatine kinase at 1.41Å resolution. Protein Science, 1999,8(11):2258-2269.
[15]   Tisi D, Bax B, Loew A . The three-dimensional structure of cytosolic bovine retinal creatine kinase. Acta Crystallographica Section D: Biological Crystallography, 2001,57(2):187-193.
doi: 10.1107/S0907444900015614 pmid: 11173463
[16]   Bush D J, Kirillova O, Clark S A , et al. The structure of lombricine kinase: implications for phosphagen kinase conformational changes. Journal of Biological Chemistry, 2011,286(11):9338-9350.
doi: 10.1074/jbc.M110.202796
[17]   Azzi A, Clark S A, Ellington W R , et al. The role of phosphagen specificity loops in arginine kinase. Protein Science, 2004,13(3):575-585.
doi: 10.1110/ps.03428304 pmid: 2286741
[18]   Bong S M, Moon J H, Nam K H , et al. Structural studies of human brain-type creatine kinase complexed with the ADP-Mg 2+-NO3--creatine transition-state analogue complex . FEBS Letters, 2008,582(28):3959-3965.
doi: 10.1016/j.febslet.2008.10.039
[19]   Lahiri S D, Wang P F, Babbitt P C , et al. The 2.1Å structure of Torpedo californica creatine kinase complexed with the ADP-Mg 2+-NO3--creatine transition-state analogue complex . Biochemistry, 2002,41(47):13861-13867.
doi: 10.1021/bi026655p
[20]   Ohren J F, Kundracik M L, Borders C L , et al. Structural asymmetry and intersubunit communication in muscle creatine kinase. Acta Crystallographica Section D: Biological Crystallography, 2007,63(3):381-389.
doi: 10.1107/S0907444906056204 pmid: 17327675
[21]   Borders C L , MacGregor K M, Edmiston P L, et al. Asparagine 285 plays a key role in transition state stabilization in rabbit muscle creatine kinase. Protein Science, 2003,12(3):532-537.
doi: 10.1110/ps.0230403 pmid: 12592023
[22]   McLeish M J, Kenyon G L . Relating structure to mechanism in creatine kinase. Critical Reviews in Biochemistry and Molecular Biology, 2005,40(1):1-20.
doi: 10.1080/10409230590918577 pmid: 15804623
[23]   Ponticos M, Lu Q L, Morgan J E , et al. Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle. The EMBO Journal, 1998,17(6):1688-1699.
doi: 10.1093/emboj/17.6.1688
[24]   Cantwell J S, Novak W R, Wang P F , et al. Mutagenesis of two acidic active site residues in human muscle creatine kinase: implications for the catalytic mechanism. Biochemistry, 2001,40(10):3056-3061.
doi: 10.1021/bi0020980 pmid: 11258919
[25]   Barbour R L, Ribaudo J, Chan S H . Effect of creatine kinase activity on mitochondrial ADP/ATP transport. Evidence for a functional interaction. Journal of Biological Chemistry, 1984,259(13):8246-8251.
pmid: 6330105
[26]   Cook P F, Kenyon G L, Cleland W W . Use of pH studies to elucidate the catalytic mechanism of rabbit muscle creatine kinase. Biochemistry, 1981,20(5):1204-1210.
doi: 10.1021/bi00508a023 pmid: 7013788
[27]   Edmiston P L, Schavolt K L, Kersteen E A , et al. Creatine kinase: a role for arginine-95 in creatine binding and active site organization. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 2001,1546(2):291-298.
doi: 10.1016/S0167-4838(01)00159-5 pmid: 11295435
[28]   Milner-White E J, Watts D C . Inhibition of adenosine 5'-triphosphate-creatine phosphotransferase by substrate-anion complexes. Evidence for the transition-state organization of the catalytic site. Biochemical Journal, 1971,122(5):727-740.
doi: 10.1042/bj1220727 pmid: 5129268
[29]   Li Q J, Fan S, Li X Y , et al. Insights into the phosphoryl transfer mechanism of human ubiquitous mitochondrial creatine kinase. Scientific Reports, 2016,6:38088.
doi: 10.1038/srep38088 pmid: 27909311
[30]   Ho S N, Hunt H D, Horton R M , et al. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene, 1989,77(1):51-59.
doi: 10.1016/0378-1119(89)90358-2 pmid: 2744487
[1] ZHAO Xiao-yan,CHEN Yun-da,ZHANG Ya-qian,WU Xiao-yu,WANG Fei,CHEN Jin-yin. Site-directed Mutagenesis Improves the Thermostability of Trehalose Synthase TreS II from Myxococcus sp.V11[J]. China Biotechnology, 2020, 40(3): 79-87.
[2] SU Yong-jun,HU Die,HU Bo-chun,LI Chuang,WEN Zheng,ZHANG Chen,WU Min-chen. Improving the Enantioselectivity of an Epoxide Hydrolase towards p-Methylphenyl Glycidyl Ether by Site-directed Mutagenesis[J]. China Biotechnology, 2020, 40(3): 88-95.
[3] Ting-ting KAN,Xun-cheng ZONG,Yong-jun SU,Ting-ting WANG,Chuang LI,Die HU,Min-chen WU. Site-directed Mutagenesis of PvEH1 to Improve Its Catalytic Properties towards ortho-Methylphenyl Glycidyl Ether[J]. China Biotechnology, 2019, 39(6): 9-16.
[4] LI Xue-qing, YUAN Feng-jiau, CHENG Jian-qing, DONG Yun-hai, LI Jian-fang, WU Min-chen. Effect of Amino Acid H321 on the Enzymatic Properties of Hybrid β-Mannanase AuMan5Aloop[J]. China Biotechnology, 2017, 37(2): 48-53.
[5] WU Qin, HU Die, LI Xue-qing, YUAN Feng-jiao, LI Jian-fang, WU Min-chen. Site-directed Mutagenesis of Y13F to Improve the Thermotolerance of Mesophilic Xylanase from Aspergillus oryzae[J]. China Biotechnology, 2016, 36(12): 36-41.
[6] XIANG Mian, ZHU Jian-quan, YU Ji-hua, LI Yang-yang, LI Juan-juan, LIU Zu-bi, WANG Wan-jun, LIAO Hai, ZHOU Jia-yu. The Site-directed Mutation of Key Residues and the Analysis about Inhibitory Activity of Cassia obtusifolia Trypsin Inhibitor[J]. China Biotechnology, 2016, 36(10): 15-20.
[7] LI Yao-yao, BI Jing, WANG Yi-hong, QIN Yun-he, ZHANG Xue-lian. Lysine-322 Acetylation Negatively Regulates Isocitrate Lyase of Mycobacterium tuberculosis[J]. China Biotechnology, 2015, 35(6): 8-13.
[8] GAO Rui-ping, CHENG Long-bin, LI Zhen-qiu. A Simple and Rapid Single Primer PCR Method for Site-directed Mutagenesis[J]. China Biotechnology, 2015, 35(5): 61-65.
[9] XIA Ya-mu, LI Chen-chen. Genetic Modification and High Expression of Cyclodextrin Glycosyltransferase[J]. China Biotechnology, 2015, 35(2): 105-110.
[10] RUAN Jing-jun, YANG Yi, TANG Zi-zhong, CHEN Hui. Study on Tartary Buckwheat Trypsin Inhibitor Activity Sites by Using Site-directed Mutagenesis[J]. China Biotechnology, 2015, 35(12): 30-36.
[11] PEI Zhi-yong, HOU Xian-hui, GUI Xiao-ke, CHEN Yu-bao. Primer Spanner: A Web-based Platform to Design PCR Primers for High Efficient Site-directed Mutagenesis[J]. China Biotechnology, 2015, 35(10): 53-58.
[12] TIAN Shuo, YAO Wen-bin, XU Chen. Construction and Biological Assay of Integrated Interferon Mutant IIFN/165S[J]. China Biotechnology, 2013, 33(7): 8-12.
[13] DENG Hui, CHEN Sheng, CHEN Jian, WU Jing. Effect of T26P and A30P Site-Directed Mutagenesis on Thermostability and Activity of Glucose Isomerases from Thermobifida fusca[J]. China Biotechnology, 2013, 33(10): 67-72.
[14] WANG Hong-cui, ZHANG Jing, XU Qian, XU Li-na, WANG Nan-jie, SUN Xue-song. The Secondery Structure Study of Iron-binding Protein MtsA from Streptococcus pyogenes[J]. China Biotechnology, 2012, 32(12): 13-19.
[15] ZHOU Ji-chang, LI Dai-lin, TANG Jia-yong, ZHAO Hua, LIU Xiao-li, ZHU Yu-mei, XU Jian. Gene Cloning,Site-directed Mutagenesis and Prokaryotic Expression of Porcine Sep15[J]. China Biotechnology, 2011, 31(8): 12-17.