Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (08): 107-110    DOI:
    
Cell Surface Engineering of Yeast Application in Biofuel
LI Xiao-dong, YANG Na, WAN Yong-hu, WU Jia, JIA Dong-chen, QIAO Min
Key Laboratory for Microbial Resources of the Ministry of Education;Laboratory for Conservation and Utilization of Bio-resource, Yunnan University,Kunming 650091,China
Download: HTML   PDF(489KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  The research of surface display has become a powerful and active topic, which has played a critical role from combinatorial library screening and protein engineering to biofuels production and bioremediation. Surface display technology and its application in biofuel has been described, research on the mechanism about the enzymes of fermentation process and application prospect of whole-cell biocatalysts were also reviewed.

Key wordsSurface display      Alcohol fermentation      Biofuel      Fermentation      Whole-cell biocatalysts     
Received: 20 April 2012      Published: 25 August 2012
ZTFLH:  Q819  
Cite this article:

LI Xiao-dong, YANG Na, WAN Yong-hu, WU Jia, JIA Dong-chen, QIAO Min. Cell Surface Engineering of Yeast Application in Biofuel. China Biotechnology, 2012, 32(08): 107-110.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I08/107

[1] Kondo A,Ueda M. Yeast cell-surface display—applications of molecular display. Appl Microbiol Biotechnol,2004,64(1):28-40.
[2] Gai S A, Wittrup K D. Yeast surface display for protein engineering and characterization. Curr Opin Struct Biol,2007,17:467-473.
[3] Shibasaki S, maeda H, Ueda M. Molecular display technology using yeast—arming technology. Anal Sci J,2009,25:41-49.
[4] Kuroda K, Ueda M. Cell surface engineering of yeast for applications in white biotechnology. Biotechnol Lett,2011,33:1-9.
[5] Georgiou G, Poetschke H L, Stathopoulos C, et al. Practical applications of engineering gram-negative bacterial cell surfaces. Trends Biotechnol,1993,11:6-10.
[6] Ueda M, Tanaka A. Cell surface engineering of yeast: construction of arming yeast with biocatalyst. J Biosci Bioeng,2000,90:125-136.
[7] Lee S Y, Choi J H, Xu Z. Microbial cell-surface display. Trends Biotechnol,2003,21:45-52.
[8] Sato N, Matsumot O T, Ueda M, et al. Long anchor using Flo1 protein enhances reactivity of cell surface-displayed glucoamylase to polymer substrates. Appl Microbiol Biotechnol,2002,60:469-474.
[9] Goldemberg J. Ethanol for a sustainable energy future. Science,2000,315:808-810.
[10] Lynd L R, Vanzyl W H, Mcbride J E, et al. Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol,2005,16:577-583.
[11] Kondo A, Shigechi H, Abe M, et al. High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase. Appl Microbiol Biotechnol,2002,58:291-296.
[12] Pack S P, Pack S P, Park K, et al. Enhancement of β-glucosidase stability and cellobiose-usage using surface-engineered recombinant Saccharomyces cerevisiae in ethanol production. Biotechnol Lett,2002,24:1919-1925.
[13] Fujita Y, Takahashi S, Ueda M, et al. Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol, 2002,68:5136-5141.
[14] Murai T, Ueda M, Shibasaki Y, et al. Development of an arming yeast strain for efficient utilization of starch by co-display of sequential amylolytic enzymes on the cell surface. Appl Microbiol Biotechnol,1999,51:65-70.
[15] Katahira S, MizuikE A, Fukuda H, et al. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose-and celluloligosaccharideassimilating yeast strain. Appl Microbiol Biotechnol,2006,72:1136-1143.
[16] Shigechi H, Koh J, Fujita Y, et al. Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and α-amylase. Appl Environ Microbiol,2004,70:5037-5040.
[17] Ueda M, Tanaka A. Genetic immobilization of proteins on the yeast cell surface. Biotech Adv,2000,18:121-140.
[18] Yanase H, Sato D, Yamamoto K, et al. Genetic engineering of Zymobacter palmae for production of ethanol from xylose. Appl Environ Microbiol,2007,73:2592-2599.
[19] Shigechi H, Fujita Y, Koh J, et al. Energy-saving direct ethanol production from low-temperature-cooked corn starch using a cell-surface engineered yeast strain co-displaying glucoamylase and α-amylase. Biochem Eng J,2004,18:149-153.
[20] Samuelson P, Gunneriusson E, Nygren P A, et al. Display of proteins on bacteria. J Biotechnol,2002,96:129-154.
[21] Yan X H, Xu Z R. Ribosome-display technology: applications for directed evolution of functional proteins. Drug Discov Today,2006,11:911-916.
[22] Cho C M, Mulchandani A, Chen W. Altering the substrate specificity of organophosphorus hydrolase for enhanced hydrolysis of chlorpyrifos. Appl Environ Microbiol,2004,70:4681-4685.
[1] GAO Yin-ling,ZHANG Feng-jiao,ZHAO Gui-zhong,ZHANG Hong-sen,WANG Feng-qin,SONG An-dong. Research Progress of Itaconic Acid Fermentation[J]. China Biotechnology, 2021, 41(5): 105-113.
[2] YANG Na,WU Qun,XU Yan. Fermentation Optimization for the Production of Surfactin by Bacillus amyloliquefaciens[J]. China Biotechnology, 2020, 40(7): 51-58.
[3] CEN Qian-hong,GAO Tong,REN Yi,LEI Han. Recombinant Saccharomyces cerevisiae Expressing Helicobacter pylori VacA Protein and Its Immunogenicity Analysis[J]. China Biotechnology, 2020, 40(5): 15-21.
[4] WANG Meng,ZHANG Quan,GAO Hui-peng,GUAN Hao,CAO Chang-hai. Research Progress on the Biological Fermentation of Xylitol[J]. China Biotechnology, 2020, 40(3): 144-153.
[5] WANG Bao-shi,TAN Feng-ling,LI Lin-bo,LI Zhi-gang,MENG Li,QIU Li-you,ZHANG Ming-xia. Biological Treatment Strategy Improves the Bio-accessibility of Bran Phenols[J]. China Biotechnology, 2020, 40(12): 88-94.
[6] Qiang-qiang PENG,Qi LIU,Ming-qiang XU,Yuan-xing ZHANG,Meng-hao CAI. Heterologous Expression of Insulin Precursor in A Newly Engineered Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 48-55.
[7] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.
[8] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[9] REN Li-qiong,WU Jing,CHEN Sheng. Co-Expression of N-Acetyltransferase Enhances the Expression of Aspergillus nidulans α-Glucosidase in Pichia pastoris[J]. China Biotechnology, 2019, 39(10): 75-81.
[10] Yan HUANG,Yi-rong SUN,Jing WU,Ling-qia SU. Optimization of High Density Fermentation of Recombinant Humicola insolens Cutinase[J]. China Biotechnology, 2019, 39(1): 63-70.
[11] Yi-ying WANG,Hai-rong CHENG. Cell Surface-Displaying the Lactose Hydrolase on Yarrowia lipolytica: a New Approach to Lactose Hydrolysis[J]. China Biotechnology, 2018, 38(8): 41-49.
[12] Jun-jie ZHAO,Long ZHANG,Liang WANG,Xu-sheng CHEN,Zhong-gui MAO. Breeding and Physiological Characteristics of ε-Polylysine High-Producing Strain with Double Antibiotic Resistance[J]. China Biotechnology, 2018, 38(8): 59-68.
[13] Fan SUN,Ling-qia SU,Kang ZHANG,Jing WU. D-psicose 3-epimerase Gene Overexpression in Bacillus subtilis and Immobilization of Cells[J]. China Biotechnology, 2018, 38(7): 83-88.
[14] Ya-chao FAN,Lin ZHANG,Xiao-shu LI,Peng-xiang WANG,Xin-wu YAO,Kai QIAO. Study on the Fermentation of 2,3-Butanediol by Klebsiella pneumoniae CICC10011[J]. China Biotechnology, 2018, 38(2): 68-74.
[15] Li-na CHENG,Hai-yan LU,Shu-ling QU,Yi-qun ZHANG,Juan-juan DING,Shao-lan ZOU. Production of Cyclic Adenosine Monophosphate (cAMP) by Microbial Fermentation——A Review[J]. China Biotechnology, 2018, 38(2): 102-108.