Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (8): 79-84    DOI:
    
Construction of Recombinant Lacbacillus rhamnosus with Tetracycline Resistance
GUO Ling, SUN Liang, LI Jian-xiu, SUN Fei-fei, HUANG Yan-yan, HUANG Ri-bo
State Key Laboratory of Non-Food Biomass and Enzyme Technology,National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Science,Guangxi Key Laboratory of Biorefinery,Nanning 530007,China
Download: HTML   PDF(1013KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The suicide plasmid pUC-ldhD-Ter containing homologous sequence from Lacbacillus rhamnosus was transformed into Lactobacillus rhamnosus JCM 1553,Two recombinant stains have been constructed successfully and named GL-1,GL-2. PCR was applied to clone the gene of tetracycline from the chromosomal DNA of recombinant stains. The growth curve of the recombinant Lacbacillus rhamnosus was consistent with that of the wild-type strain.The highest yield of L-lactic acid in Erlenmeyer flasks from 10% glucose at 37℃/200 r/min by GL-1 and GL-2 are 93.956 g/L,and 93.693 g/L after 40h.The conversion of glucose are 94.82% and 94.56%. OD600 value of the two strains achieve 25.49 and 24.66.The residual sugar content are 0.60% and 0.63% respectively.The result showed no remarkable difference from the wild type.



Key wordsSuicide plasmid      Fermentation      L-lactic acid      Lactobacillus rhamnosus     
Received: 15 March 2011      Published: 25 August 2011
ZTFLH:  Q789  
Cite this article:

GUO Ling, SUN Liang, LI Jian-xiu, SUN Fei-fei, HUANG Yan-yan, HUANG Ri-bo. Construction of Recombinant Lacbacillus rhamnosus with Tetracycline Resistance. China Biotechnology, 2011, 31(8): 79-84.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I8/79


[1] 钱程,霍贵成,马微.鼠李糖乳杆菌(LGG)的功能特性及其应用前景.食品科技,2005,(9):94-98. Qian C,Huo G C,Ma W.Food Science and Technology,2005,(9):94-98.

[2] Alander M,Satokari R,Korpela R. Persistence of colonization of human colonic mucosa by a probiotic strain,Lactobacillus rhamnosus G G,after oral consumption.Appl Environ Microbiol,1999,65:351-354.

[3] Kaila M,Isolauri E,Sepp E. Fecal recovery of a human Lactobacillus strain(ATCC 53103)during dietary therapy of rotavirus diarrhea in infants. Biosci Microflora,1998,17:149-151.

[4] 白东梅,赵学明,胡宗定.玉米粉发酵生产L-乳酸的研究.化学工程,2002,30(3):50-54. Bai D M,Zhao X M,Hu Z D. Chemical Engineering,2002,30(3):50-54.

[5] 王立梅,齐斌. L-乳酸应用及生产技术研究进展.食品科学,2007,28(10):608-612. Wang L M,Qi B.Food Science,2007,28(10):608-612.

[6] 孙靓,孙菲菲,黄艳燕,等.木薯淀粉发酵生产L-乳酸的培养条件优化.中国酿造,2009,(7):33-37. Sun L,Sun F F,Huang Y Y,et al.China Brewing,2009,(7):33-37.

[7] 贾士芳,王荫榆,郭兴华,等.乳杆菌电转化条件的研究.生物工程学报,1998,14(4):429-433. Jia S F,Wang Y Y,Guo X H,et al. Chinese Journal of Biotechnology,1998,14(4):429-433.

[8] J 萨姆布鲁克,D W 弗里奇,著.黄培堂等译.分子克隆实验指南.第3版,北京:科学出版社,2002. 26-96. Sambrook J,Russell D W.Molecular Cloning:A Laboratory Manual,3rd ed,Beijing:Science Press,2002.26-96.

[9] 曹晓梅,张虎成,李曼,等.乳杆菌电转化的研究进展.军事医学院院刊,2008,32(6):590-593. Cao X M,Zhang H C,Li M,et al. Bull Acad Mil Med Sci,2008,32(6):590-593.

[10] Tanaka K,Komiyama A,Sonomoto K A,et al.Two different pathways for D-xylose metabolism and the effect of xylose concentration on the yield coefficient of L-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis 10-l.Applied Microbiology and Biotechnology,2002,60:160-167.

[1] GAO Yin-ling,ZHANG Feng-jiao,ZHAO Gui-zhong,ZHANG Hong-sen,WANG Feng-qin,SONG An-dong. Research Progress of Itaconic Acid Fermentation[J]. China Biotechnology, 2021, 41(5): 105-113.
[2] YANG Na,WU Qun,XU Yan. Fermentation Optimization for the Production of Surfactin by Bacillus amyloliquefaciens[J]. China Biotechnology, 2020, 40(7): 51-58.
[3] WANG Meng,ZHANG Quan,GAO Hui-peng,GUAN Hao,CAO Chang-hai. Research Progress on the Biological Fermentation of Xylitol[J]. China Biotechnology, 2020, 40(3): 144-153.
[4] WANG Bao-shi,TAN Feng-ling,LI Lin-bo,LI Zhi-gang,MENG Li,QIU Li-you,ZHANG Ming-xia. Biological Treatment Strategy Improves the Bio-accessibility of Bran Phenols[J]. China Biotechnology, 2020, 40(12): 88-94.
[5] Qiang-qiang PENG,Qi LIU,Ming-qiang XU,Yuan-xing ZHANG,Meng-hao CAI. Heterologous Expression of Insulin Precursor in A Newly Engineered Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 48-55.
[6] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.
[7] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[8] REN Li-qiong,WU Jing,CHEN Sheng. Co-Expression of N-Acetyltransferase Enhances the Expression of Aspergillus nidulans α-Glucosidase in Pichia pastoris[J]. China Biotechnology, 2019, 39(10): 75-81.
[9] Yan HUANG,Yi-rong SUN,Jing WU,Ling-qia SU. Optimization of High Density Fermentation of Recombinant Humicola insolens Cutinase[J]. China Biotechnology, 2019, 39(1): 63-70.
[10] Jun-jie ZHAO,Long ZHANG,Liang WANG,Xu-sheng CHEN,Zhong-gui MAO. Breeding and Physiological Characteristics of ε-Polylysine High-Producing Strain with Double Antibiotic Resistance[J]. China Biotechnology, 2018, 38(8): 59-68.
[11] Fan SUN,Ling-qia SU,Kang ZHANG,Jing WU. D-psicose 3-epimerase Gene Overexpression in Bacillus subtilis and Immobilization of Cells[J]. China Biotechnology, 2018, 38(7): 83-88.
[12] Ya-chao FAN,Lin ZHANG,Xiao-shu LI,Peng-xiang WANG,Xin-wu YAO,Kai QIAO. Study on the Fermentation of 2,3-Butanediol by Klebsiella pneumoniae CICC10011[J]. China Biotechnology, 2018, 38(2): 68-74.
[13] Li-na CHENG,Hai-yan LU,Shu-ling QU,Yi-qun ZHANG,Juan-juan DING,Shao-lan ZOU. Production of Cyclic Adenosine Monophosphate (cAMP) by Microbial Fermentation——A Review[J]. China Biotechnology, 2018, 38(2): 102-108.
[14] ZHANG Ling,WANG Nan,JIN Lv-hua,LIN Rong,YANG Hai-lin. To Promote the Expression of Leucine Dehydrogenase in Bacillus subtilis via Dual-Promoter and Fermentation Research[J]. China Biotechnology, 2018, 38(12): 21-31.
[15] LIU Cui-cui, HU Meng-die, WANG Zhi, DAI Jun, YAO Juan, LI Pei, LI Zhi-jun, CHEN Xiong, LI Xin. Metabolic Characteristics of Intracellular Trehalose Accumulation in Zygosaccharomyces rouxii[J]. China Biotechnology, 2017, 37(9): 41-47.