Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (9): 83-92    DOI: 10.13523/j.cb.2204015
综述     
动物基因组编辑中提升CRISPR/Cas9介导的同源重组效率研究进展*
冯爽1,王春伟1,苏小虎1,2,**()
1.内蒙古大学生命科学学院 呼和浩特 010020
2.内蒙古大学省部共建草原家畜生殖调控与繁育国家重点实验室 呼和浩特 010020
Research Advancement of CRISPR/Cas9 Directed Homologous Recombination Efficiency Improvements in Mammal Genome Editing
FENG Shuang1,WANG Chun-wei1,SU Xiao-hu1,2,**()
1. School of Life Sciences, Inner Mongolia University, Hohhot 010020, China
2. State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010020, China
 全文: PDF(848 KB)   HTML
摘要:

基因组编辑技术可以对DNA或RNA进行精准改造,极大地促进了生命科学的发展。CRISPR/Cas9系统在靶位点诱导DNA发生双链或单链损伤,细胞对损伤部位采用无供体模板的非同源末端连接(non-homologous end joining,NHEJ)或有供体模板的同源重组(homologous recombination,HR)修复。基于HR的基因组编辑策略通常被用于获得DNA的精准改造,而NHEJ在动物DNA损伤修复中起主导作用。为了提升HR效率,研究人员设计了多种方案,包括CRISPR/Cas9系统优化和DNA修复通路调控等。从DNA损伤修复途径、Cas9变体选择、sgRNA设计、供体模板设计、DNA修复途径相关蛋白功能调控、供体模板募集效率提升、细胞周期调控及编辑细胞生存效率提升等方面详细综述了相关研究成果,发现尚未开发出放之四海而皆准的HR提升策略,基于HR的基因组编辑需要针对具体案例制定个体化策略。旨在为动物基因组编辑中提升CRISPR/Cas9介导的HR效率研究提供理论参考,为动物基因功能分析、基因治疗和经济动物基因编辑育种提供帮助。

关键词: CRISPR/Cas9同源重组效率提升动物基因组编辑    
Abstract:

The genome editing system can bring the precise modification of DNA or RNA, which provides great help for the development of life sciences. The CRISPR/Cas9 could induce double or single strand DNA damage at target sites. The damages are repaired by non-homologous end joining (NHEJ) without donor template or homologous recombination (HR) with donor template in cells. The HR-based genome editing strategy is common to generate precise modification of DNA. However, NHEJ plays a dominant role in mammal DNA repair. To improve the HR efficiency,the researchers designed multiple strategies, which include genome editing system optimization and DNA repair pathway regulation. The related research achievements from the aspects of DNA damage repair pathway, Cas9 mutation selection, sgRNA design, donor template design, functional regulation of DNA repair pathway related proteins, improvement of donor template recruitment efficiency, cell cycle regulation and improvement of editing cell survival efficiency were reviewed. A one-size-fits-all HR promotion strategy has not yet been developed. The case-specific strategies of HR-based are required during relative research. This review can provide theoretical reference for improving the efficiency of CRISPR/Cas9-mediated HR in animal genome editing and provide help for animal gene function analysis, gene therapy and economic animal breeding through gene editing.

Key words: CRISPR/Cas9    Homologous recombination    Efficiency improvement    Mammal genome editing
收稿日期: 2022-04-08 出版日期: 2022-10-10
ZTFLH:  Q78  
基金资助: * 内蒙古科技厅重大专项(2021ZD0048)
通讯作者: 苏小虎     E-mail: 13947144670@139.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
冯爽
王春伟
苏小虎

引用本文:

冯爽,王春伟,苏小虎. 动物基因组编辑中提升CRISPR/Cas9介导的同源重组效率研究进展*[J]. 中国生物工程杂志, 2022, 42(9): 83-92.

FENG Shuang,WANG Chun-wei,SU Xiao-hu. Research Advancement of CRISPR/Cas9 Directed Homologous Recombination Efficiency Improvements in Mammal Genome Editing. China Biotechnology, 2022, 42(9): 83-92.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2204015        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I9/83

图1  DNA修复途径调控提升HR效率
[1] Nambiar T S, Baudrier L, Billon P, et al. CRISPR-based genome editing through the lens of DNA repair. Molecular Cell, 2022, 82(2): 348-388.
doi: 10.1016/j.molcel.2021.12.026 pmid: 35063100
[2] Carroll D. Genome engineering with targetable nucleases. Annual Review of Biochemistry, 2014, 83: 409-439.
doi: 10.1146/annurev-biochem-060713-035418 pmid: 24606144
[3] Kan Y N, Ruis B, Takasugi T, et al. Mechanisms of precise genome editing using oligonucleotide donors. Genome Research, 2017, 27(7): 1099-1111.
doi: 10.1101/gr.214775.116 pmid: 28356322
[4] Chang H H Y, Pannunzio N R, Adachi N, et al. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nature Reviews Molecular Cell Biology, 2017, 18(8): 495-506.
doi: 10.1038/nrm.2017.48 pmid: 28512351
[5] Shrivastav M, de Haro L P, Nickoloff J A. Regulation of DNA double-strand break repair pathway choice. Cell Research, 2008, 18(1): 134-147.
doi: 10.1038/cr.2007.111 pmid: 18157161
[6] Takata M, Sasaki M S, Sonoda E, et al. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. The EMBO Journal, 1998, 17(18): 5497-5508.
doi: 10.1093/emboj/17.18.5497
[7] Arnoult N, Correia A, Ma J, et al. Regulation of DNA repair pathway choice in S and G 2 phases by the NHEJ inhibitor CYREN. Nature, 2017, 549(7673): 548-552.
doi: 10.1038/nature24023
[8] Tran N T, Bashir S, Li X, et al. Enhancement of precise gene editing by the association of Cas 9 with homologous recombination factors. Frontiers in Genetics, 2019, 10: 365.
doi: 10.3389/fgene.2019.00365
[9] Denes C E, Cole A J, Aksoy Y A, et al. Approaches to enhance precise CRISPR/Cas9-mediated genome editing. International Journal of Molecular Sciences, 2021, 22(16): 8571.
doi: 10.3390/ijms22168571
[10] Fu Y W, Dai X Y, Wang W T, et al. Dynamics and competition of CRISPR-Cas 9 ribonucleoproteins and AAV donor-mediated NHEJ, MMEJ and HDR editing. Nucleic Acids Research, 2021, 49(2): 969-985.
doi: 10.1093/nar/gkaa1251
[11] Anzalone A V, Koblan L W, Liu D R. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nature Biotechnology, 2020, 38(7): 824-844.
doi: 10.1038/s41587-020-0561-9 pmid: 32572269
[12] Collias D, Beisel C L. CRISPR technologies and the search for the PAM-free nuclease. Nature Communications, 2021, 12(1): 555.
doi: 10.1038/s41467-020-20633-y pmid: 33483498
[13] Chen J S, Dagdas Y S, Kleinstiver B P, et al. Enhanced proofreading governs CRISPR-Cas 9 targeting accuracy. Nature, 2017, 550(7676): 407-410.
doi: 10.1038/nature24268
[14] Kato-Inui T, Takahashi G, Hsu S, et al. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 with improved proof-reading enhances homology-directed repair. Nucleic Acids Research, 2018, 46(9): 4677-4688.
doi: 10.1093/nar/gky264 pmid: 29672770
[15] Kleinstiver B P, Pattanayak V, Prew M S, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 2016, 529(7587): 490-495.
doi: 10.1038/nature16526
[16] Idoko-Akoh A, Taylor L, Sang H M, et al. High fidelity CRISPR/Cas 9 increases precise monoallelic and biallelic editing events in primordial germ cells. Scientific Reports, 2018, 8(1): 15126.
doi: 10.1038/s41598-018-33244-x pmid: 30310080
[17] Robertson L, Pederick D, Piltz S, et al. Expanding the RNA-guided endonuclease toolkit for mouse genome editing. The CRISPR Journal, 2018, 1: 431-439.
doi: 10.1089/crispr.2018.0050
[18] Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science (New York, NY),2013, 339(6121): 819-823.
[19] Wang Y C, Zhao J Y, Duan N N, et al. Paired CRISPR/Cas9 nickases mediate efficient site-specific integration of F9 into rDNA locus of mouse ESCs. International Journal of Molecular Sciences, 2018, 19(10): 3035.
doi: 10.3390/ijms19103035
[20] Chen F Q, Ding X, Feng Y M, et al. Targeted activation of diverse CRISPR-Cas systems for mammalian genome editing via proximal CRISPR targeting. Nature Communications, 2017, 8: 14958.
doi: 10.1038/ncomms14958 pmid: 28387220
[21] Acharya S, Mishra A, Paul D, et al. Francisella novicida Cas9 interrogates genomic DNA with very high specificity and can be used for mammalian genome editing. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(42): 20959-20968.
[22] Hsu P D, Scott D A, Weinstein J A, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 2013, 31(9): 827-832.
doi: 10.1038/nbt.2647 pmid: 23873081
[23] Heigwer F, Kerr G, Boutros M. E-CRISP: fast CRISPR target site identification. Nature Methods, 2014, 11(2): 122-123.
doi: 10.1038/nmeth.2812 pmid: 24481216
[24] da Eun Jang, Lee J Y, Lee J H, et al. Multiple sgRNAs with overlapping sequences enhance CRISPR/Cas9-mediated knock-in efficiency. Experimental & Molecular Medicine, 2018, 50(4): 1-9.
[25] Farboud B, Meyer B J. Dramatic enhancement of genome editing by CRISPR/Cas9 through improved guide RNA design. Genetics, 2015, 199(4): 959-971.
doi: 10.1534/genetics.115.175166 pmid: 25695951
[26] Guilinger J P, Thompson D B, Liu D R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nature Biotechnology, 2014, 32(6): 577-582.
doi: 10.1038/nbt.2909 pmid: 24770324
[27] Feng S Y, Wang Z L, Li A F, et al. Strategies for high-efficiency mutation using the CRISPR/Cas system. Frontiers in Cell and Developmental Biology, 2022, 9: 803252.
doi: 10.3389/fcell.2021.803252
[28] San Filippo J, Sung P, Klein H. Mechanism of eukaryotic homologous recombination. Annual Review of Biochemistry, 2008, 77: 229-257.
doi: 10.1146/annurev.biochem.77.061306.125255 pmid: 18275380
[29] Kan Y N, Ruis B, Lin S, et al. The mechanism of gene targeting in human somatic cells. PLoS Genetics, 2014, 10(4): e1004251.
doi: 10.1371/journal.pgen.1004251
[30] Gaj T, Staahl B T, Rodrigues G M C, et al. Targeted gene knock-in by homology-directed genome editing using Cas 9 ribonucleoprotein and AAV donor delivery. Nucleic Acids Research, 2017, 45(11): e98.
doi: 10.1093/nar/gkx154
[31] Zhang J P, Li X L, Li G H, et al. Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biology, 2017, 18(1): 35.
doi: 10.1186/s13059-017-1164-8
[32] Song F, Stieger K. Optimizing the DNA donor template for homology-directed repair of double-strand breaks. Molecular Therapy - Nucleic Acids, 2017, 7: 53-60.
doi: 10.1016/j.omtn.2017.02.006
[33] Ye L P, Wang C K, Hong L J, et al. Programmable DNA repair with CRISPRa/i enhanced homology-directed repair efficiency with a single Cas9. Cell Discovery, 2018, 4: 46.
doi: 10.1038/s41421-018-0049-7 pmid: 30062046
[34] Wen W, Cheng X X, Fu Y W, et al. High-level precise knockin of iPSCs by simultaneous reprogramming and genome editing of human peripheral blood mononuclear cells. Stem Cell Reports, 2018, 10(6): 1821-1834.
doi: S2213-6711(18)30181-4 pmid: 29754960
[35] Dokshin G A, Ghanta K S, Piscopo K M, et al. Robust genome editing with short single-stranded and long, partially single-stranded DNA donors in Caenorhabditis elegans. Genetics, 2018, 210(3): 781-787.
doi: 10.1534/genetics.118.301532
[36] Ehrke-Schulz E, Schiwon M, Leitner T, et al. CRISPR/Cas9 delivery with one single adenoviral vector devoid of all viral genes. Scientific Reports, 2017, 7(1): 17113.
doi: 10.1038/s41598-017-17180-w pmid: 29215041
[37] Gao J, Bergmann T, Zhang W L, et al. Viral vector-based delivery of CRISPR/Cas9 and donor DNA for homology-directed repair in an in vitro model for canine hemophilia B. Molecular Therapy Nucleic Acids, 2019, 14: 364-376.
doi: 10.1016/j.omtn.2018.12.008
[38] Gutierrez-Triana J A, Tavhelidse T, Thumberger T, et al. Efficient single-copy HDR by 5' modified long dsDNA donors. eLife, 2018, 7: e39468.
doi: 10.7554/eLife.39468
[39] Liang X Q, Potter J, Kumar S, et al. Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA. Journal of Biotechnology, 2017, 241: 136-146.
doi: S0168-1656(16)31611-X pmid: 27845164
[40] Richardson C D, Ray G J, DeWitt M A, et al. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nature Biotechnology, 2016, 34(3): 339-344.
doi: 10.1038/nbt.3481 pmid: 26789497
[41] Wang K K, Tang X C, Liu Y, et al. Efficient generation of orthologous point mutations in pigs via CRISPR-assisted ssODN-mediated homology-directed repair. Molecular Therapy - Nucleic Acids, 2016, 5(11): e396.
doi: 10.1038/mtna.2016.101
[42] Wu Y X, Zhou H, Fan X Y, et al. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Research, 2015, 25(1): 67-79.
doi: 10.1038/cr.2014.160 pmid: 25475058
[43] Lanza D G, Gaspero A, Lorenzo I, et al. Comparative analysis of single-stranded DNA donors to generate conditional null mouse alleles. BMC Biology, 2018, 16(1): 69.
doi: 10.1186/s12915-018-0529-0 pmid: 29925370
[44] Bollen Y, Post J, Koo B K, et al. How to create state-of-the-art genetic model systems: strategies for optimal CRISPR-mediated genome editing. Nucleic Acids Research, 2018, 46(13): 6435-6454.
doi: 10.1093/nar/gky571 pmid: 29955892
[45] Paulsen B S, Mandal P K, Frock R L, et al. Ectopic expression of RAD52 and dn53BP1 improves homology-directed repair during CRISPR-Cas9 genome editing. Nature Biomedical Engineering, 2017, 1(11): 878-888.
doi: 10.1038/s41551-017-0145-2 pmid: 31015609
[46] Canny M D, Moatti N, Wan L C K, et al. Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency. Nature Biotechnology, 2018, 36(1): 95-102.
doi: 10.1038/nbt.4021 pmid: 29176614
[47] Jayavaradhan R, Pillis D M, Goodman M, et al. CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites. Nature Communications, 2019, 10(1): 2866.
doi: 10.1038/s41467-019-10735-7 pmid: 31253785
[48] Shrivastav M, Miller C A, de Haro L P, et al. DNA-PKcs and ATM co-regulate DNA double-strand break repair. DNA Repair, 2009, 8(8): 920-929.
doi: 10.1016/j.dnarep.2009.05.006 pmid: 19535303
[49] Riesenberg S, Chintalapati M, Macak D, et al. Simultaneous precise editing of multiple genes in human cells. Nucleic Acids Research, 2019, 47(19): e116.
doi: 10.1093/nar/gkz669
[50] Yan Q, Xu K, Xing J N, et al. Multiplex CRISPR/Cas9-based genome engineering enhanced by Drosha-mediated sgRNA-shRNA structure. Scientific Reports, 2016, 6: 38970.
doi: 10.1038/srep38970 pmid: 27941919
[51] Sun Y S, Yan N N, Mu L, et al. sgRNA-shRNA structure mediated SNP site editing on porcine IGF2 gene by CRISPR/StCas9. Frontiers in Genetics, 2019, 10: 347.
doi: 10.3389/fgene.2019.00347
[52] Kiani S, Chavez A, Tuttle M, et al. Cas9 gRNA engineering for genome editing, activation and repression. Nature Methods, 2015, 12(11): 1051-1054.
doi: 10.1038/nmeth.3580 pmid: 26344044
[53] Charpentier M, Khedher A H Y, Menoret S, et al. CtIP fusion to Cas 9 enhances transgene integration by homology-dependent repair. Nature Communications, 2018, 9(1): 1133.
doi: 10.1038/s41467-018-03475-7 pmid: 29556040
[54] Baumann P, West S C. Role of the human RAD51 protein in homologous recombination and double-stranded-break repair. Trends in Biochemical Sciences, 1998, 23(7): 247-251.
pmid: 9697414
[55] Yang H, Ren S L, Yu S Y, et al. Methods favoring homology-directed repair choice in response to CRISPR/Cas 9 induced-double strand breaks. International Journal of Molecular Sciences, 2020, 21(18): 6461.
doi: 10.3390/ijms21186461
[56] Davis L, Maizels N. Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(10): E924-E932.
[57] Davis L, Maizels N. Two distinct pathways support gene correction by single-stranded donors at DNA nicks. Cell Reports, 2016, 17(7): 1872-1881.
doi: S2211-1247(16)31469-3 pmid: 27829157
[58] Rees H A, Yeh W H, Liu D R. Development of hRad51-Cas9 nickase fusions that mediate HDR without double-stranded breaks. Nature Communications, 2019, 10(1): 2212.
doi: 10.1038/s41467-019-09983-4 pmid: 31101808
[59] Bhargava R, Onyango D O, Stark J M. Regulation of single-strand annealing and its role in genome maintenance. Trends in Genetics, 2016, 32(9): 566-575.
doi: S0168-9525(16)30068-3 pmid: 27450436
[60] Shao S M, Ren C H, Liu Z T, et al. Enhancing CRISPR/Cas9-mediated homology-directed repair in mammalian cells by expressing Saccharomyces cerevisiae Rad52. The International Journal of Biochemistry & Cell Biology, 2017, 92: 43-52.
doi: 10.1016/j.biocel.2017.09.012
[61] Huang J, Huen M S Y, Kim H, et al. RAD18 transmits DNA damage signalling to elicit homologous recombination repair. Nature Cell Biology, 2009, 11(5): 592-603.
doi: 10.1038/ncb1865 pmid: 19396164
[62] Nambiar T S, Billon P, Diedenhofen G, et al. Stimulation of CRISPR-mediated homology-directed repair by an engineered RAD18 variant. Nature Communications, 2019, 10(1): 3395.
doi: 10.1038/s41467-019-11105-z pmid: 31363085
[63] Balasubramanian N, Bai P, Buchek G, et al. Physical interaction between the Herpes simplex virus type 1 exonuclease, UL12, and the DNA double-strand break-sensing MRN complex. Journal of Virology, 2010, 84(24): 12504-12514.
doi: 10.1128/JVI.01506-10 pmid: 20943970
[64] Reuven N, Adler J, Broennimann K, et al. Recruitment of DNA repair MRN complex by intrinsically disordered protein domain fused to Cas 9 improves efficiency of CRISPR-mediated genome editing. Biomolecules, 2019, 9(10): 584.
doi: 10.3390/biom9100584
[65] Srivastava M, Nambiar M, Sharma S, et al. An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell, 2012, 151(7): 1474-1487.
doi: 10.1016/j.cell.2012.11.054 pmid: 23260137
[66] Sun W L, Liu H, Yin W H, et al. Strategies for enhancing the homology-directed repair efficiency of CRISPR-Cas systems. The CRISPR Journal, 2022, 5(1): 7-18.
doi: 10.1089/crispr.2021.0039
[67] Chu V T, Weber T, Wefers B, et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nature Biotechnology, 2015, 33(5): 543-548.
doi: 10.1038/nbt.3198 pmid: 25803306
[68] Hu Z, Shi Z Y, Guo X G, et al. Ligase IV inhibitor SCR7 enhances gene editing directed by CRISPR-Cas9 and ssODN in human cancer cells. Cell & Bioscience, 2018, 8: 12.
[69] Maruyama T, Dougan S K, Truttmann M C, et al. Increasing the efficiency of precise genome editing with CRISPR-Cas 9 by inhibition of nonhomologous end joining. Nature Biotechnology, 2015, 33(5): 538-542.
doi: 10.1038/nbt.3190 pmid: 25798939
[70] Shy B R, MacDougall M S, Clarke R, et al. Co-incident insertion enables high efficiency genome engineering in mouse embryonic stem cells. Nucleic Acids Research, 2016, 44(16): 7997-8010.
doi: 10.1093/nar/gkw685 pmid: 27484482
[71] Song J, Yang D S, Xu J, et al. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nature Communications, 2016, 7: 10548.
doi: 10.1038/ncomms10548 pmid: 26817820
[72] Aksoy Y A, Nguyen D T, Chow S, et al. Chemical reprogramming enhances homology-directed genome editing in zebrafish embryos. Communications Biology, 2019, 2: 198.
doi: 10.1038/s42003-019-0444-0 pmid: 31925033
[73] Zhang Y B, Zhang Z W, Ge W. An efficient platform for generating somatic point mutations with germline transmission in the zebrafish by CRISPR/Cas9-mediated gene editing. The Journal of Biological Chemistry, 2018, 293(17): 6611-6622.
doi: 10.1074/jbc.RA117.001080
[74] Li G L, Zhang X W, Zhong C L, et al. Small molecules enhance CRISPR/Cas9-mediated homology-directed genome editing in primary cells. Scientific Reports, 2017, 7: 8943.
doi: 10.1038/s41598-017-09306-x pmid: 28827551
[75] Gerlach M, Kraft T, Brenner B, et al. Efficient knock-in of a point mutation in porcine fibroblasts using the CRISPR/Cas9- GMNN fusion gene. Genes, 2018, 9(6): 296.
doi: 10.3390/genes9060296
[76] Leahy J J J, Golding B T, Griffin R J, et al. Identification of a highly potent and selective DNA-dependent protein kinase (DNA-PK) inhibitor (NU7441) by screening of chromenone libraries. Bioorganic & Medicinal Chemistry Letters, 2004, 14(24): 6083-6087.
doi: 10.1016/j.bmcl.2004.09.060
[77] Robert F, Barbeau M, Éthier S, et al. Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing. Genome Medicine, 2015, 7(1): 93.
doi: 10.1186/s13073-015-0215-6
[78] Azhagiri M K K, Babu P, Venkatesan V, et al. Homology-directed gene-editing approaches for hematopoietic stem and progenitor cell gene therapy. Stem Cell Research & Therapy, 2021, 12(1): 500.
[79] Harnor S J, Brennan A, Cano C. Targeting DNA-dependent protein kinase for cancer therapy. ChemMedChem, 2017, 12(12): 895-900.
doi: 10.1002/cmdc.201700143 pmid: 28423228
[80] Jayathilaka K, Sheridan S D, Bold T D, et al. A chemical compound that stimulates the human homologous recombination protein RAD51. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(41): 15848-15853.
[81] Pinder J, Salsman J, Dellaire G. Nuclear domain ‘knock-in’ screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing. Nucleic Acids Research, 2015, 43(19): 9379-9392.
doi: 10.1093/nar/gkv993
[82] de Brabander M, de Mey J, Joniau M, et al. Ultrastructural immunocytochemical distribution of tubulin in cultured cells treated with microtubule inhibitors. Cell Biology International Reports, 1977, 1(2): 177-183.
pmid: 343926
[83] Lin S, Staahl B T, Alla R K, et al. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife, 2014, 3: e04766.
doi: 10.7554/eLife.04766
[84] Vassilev L T, Tovar C, Chen S Q, et al. Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(28): 10660-10665.
[85] Vassilev L T. Cell cycle synchronization at the G2/M phase border by reversible inhibition of CDK1. Cell Cycle (Georgetown, Tex), 2006, 5(22): 2555-2556.
doi: 10.4161/cc.5.22.3463
[86] Lomova A, Clark D N, Campo-Fernandez B, et al. Improving gene editing outcomes in human hematopoietic stem and progenitor cells by temporal control of DNA repair. Stem Cells(Dayton, Ohio), 2019, 37(2): 284-294.
[87] Parmee E R, Ok H O, Candelore M R, et al. Discovery of L-755, 507: a subnanomolar human β3 adrenergic receptor agonist. Bioorganic & Medicinal Chemistry Letters, 1998, 8(9): 1107-1112.
doi: 10.1016/S0960-894X(98)00170-X
[88] Yu C, Liu Y X, Ma T H, et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell, 2015, 16(2): 142-147.
doi: 10.1016/j.stem.2015.01.003 pmid: 25658371
[89] Ktistakis N T, Linden M E, Roth M G. Action of brefeldin A blocked by activation of a pertussis-toxin-sensitive G protein. Nature, 1992, 356(6367): 344-346.
doi: 10.1038/356344a0
[90] Srinivasan A, Gold B. Small-molecule inhibitors of DNA damage-repair pathways: an approach to overcome tumor resistance to alkylating anticancer drugs. Future Medicinal Chemistry, 2012, 4(9): 1093-1111.
doi: 10.4155/fmc.12.58 pmid: 22709253
[91] Zhang J Q, Zhu Z S, Yue W, et al. Establishment of CRISPR/Cas9-mediated knock-in system for porcine cells with high efficiency. Applied Biochemistry and Biotechnology, 2019, 189(1): 26-36.
doi: 10.1007/s12010-019-02984-5 pmid: 30859452
[92] Li X L, Li G H, Fu J, et al. Highly efficient genome editing via CRISPR-Cas 9 in human pluripotent stem cells is achieved by transient BCL-XL overexpression. Nucleic Acids Research, 2018, 46(19): 10195-10215.
doi: 10.1093/nar/gky804
[93] Roche P J R, Gytz H, Hussain F, et al. Double-stranded biotinylated donor enhances homology-directed repair in combination with Cas9 monoavidin in mammalian cells. The CRISPR Journal, 2018, 1: 414-430.
doi: 10.1089/crispr.2018.0045
[94] Aird E J, Lovendahl K N, St Martin A, et al. Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template. Communications Biology, 2018, 1: 54.
doi: 10.1038/s42003-018-0054-2 pmid: 30271937
[95] Savić N, Ringnalda F C, Berk C, et al. In vitro generation of CRISPR-Cas9 complexes with covalently bound repair templates for genome editing in mammalian cells. Bio-protocol, 2019, 9(1): e3136.
[96] Anzalone A V, Randolph P B, Davis J R, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019, 576(7785): 149-157.
doi: 10.1038/s41586-019-1711-4
[97] Zhi S Y, Chen Y X, Wu G L, et al. Dual-AAV delivering split prime editor system for in vivo genome editing. Molecular Therapy, 2022, 30(1): 283-294.
doi: 10.1016/j.ymthe.2021.07.011
[98] Zhang J P, Yang Z X, Zhang F, et al. HDAC inhibitors improve CRISPR-mediated HDR editing efficiency in iPSCs. Science China Life Sciences, 2021, 64(9): 1449-1462.
doi: 10.1007/s11427-020-1855-4
[99] Supharattanasitthi W, Carlsson E, Sharif U, et al. CRISPR/Cas9-mediated one step bi-allelic change of genomic DNA in iPSCs and human RPE cells in vitro with dual antibiotic selection. Scientific Reports, 2019, 9(1): 174.
doi: 10.1038/s41598-018-36740-2 pmid: 30655567
[100] Jensen K T, Fløe L, Petersen T S, et al. Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas 9 gene editing efficiency. FEBS Letters, 2017, 591(13): 1892-1901.
doi: 10.1002/1873-3468.12707
[101] Chen X Y, Rinsma M, Janssen J M, et al. Probing the impact of chromatin conformation on genome editing tools. Nucleic Acids Research, 2016, 44(13): 6482-6492.
doi: 10.1093/nar/gkw524 pmid: 27280977
[102] Chen X Y, Liu J, Janssen J M, et al. The chromatin structure differentially impacts high-specificity CRISPR-Cas9 nuclease strategies. Molecular Therapy Nucleic Acids, 2017, 8: 558-563.
doi: 10.1016/j.omtn.2017.08.005
[103] Daer R M, Cutts J P, Brafman D A, et al. The impact of chromatin dynamics on Cas9-mediated genome editing in human cells. ACS Synthetic Biology, 2017, 6(3): 428-438.
doi: 10.1021/acssynbio.5b00299 pmid: 27783893
[104] Uusi-Mäkelä M I E, Barker H R, Bäuerlein C A, et al. Chromatin accessibility is associated with CRISPR-Cas 9 efficiency in the zebrafish (Danio rerio). PLoS One, 2018, 13(4): e0196238.
doi: 10.1371/journal.pone.0196238
[105] Ding X, Seebeck T, Feng Y M, et al. Improving CRISPR-Cas9 genome editing efficiency by fusion with chromatin-modulating peptides. The CRISPR Journal, 2019, 2: 51-63.
doi: 10.1089/crispr.2018.0036
[106] Guo Q, Mintier G, Ma-Edmonds M, et al. ‘Cold shock’ increases the frequency of homology directed repair gene editing in induced pluripotent stem cells. Scientific Reports, 2018, 8(1): 2080.
doi: 10.1038/s41598-018-20358-5 pmid: 29391533
[107] Tan W F, Carlson D F, Lancto C A, et al. Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(41): 16526-16531.
[108] Maikova A, Zalutskaya Z, Lapina T, et al. The HSP70 chaperone machines of Chlamydomonas are induced by cold stress. Journal of Plant Physiology, 2016, 204: 85-91.
doi: S0176-1617(16)30144-4 pmid: 27543887
[109] Kang G Y, Kim E H, Lee H J, et al. Heat shock factor 1, an inhibitor of non-homologous end joining repair. Oncotarget, 2015, 6(30): 29712-29724.
doi: 10.18632/oncotarget.5073
[1] 瞿丽丽,丁学峰,蔡燕飞,鲁晨,李华钟,金坚,陈蕴. CHO细胞基因组NW-003614092.1内稳定表达位点的发现*[J]. 中国生物工程杂志, 2022, 42(6): 12-19.
[2] 武秀知,王宏杰,祖尧. 斑马鱼hoxa1a基因调控颅面骨骼发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(9): 20-26.
[3] 毕博,张宇,赵慧. 酵母杂交系统在CRISPR/Cas9基因编辑系统脱靶率研究中的应用*[J]. 中国生物工程杂志, 2021, 41(6): 27-37.
[4] 郭洋,陈艳娟,刘怡辰,王海杰,王成稷,王珏,万颖寒,周宇,奚骏,沈如凌. Pd-1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2021, 41(10): 1-11.
[5] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[6] 樊斌,陈欢,宋婉莹,陈光,王刚. 乳酸菌基因改造技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 84-92.
[7] 黄胜, 严启滔, 熊仕琳, 彭弈骐, 赵蕊. 基于CRISPR/Cas9-SAM系统CHD5基因过表达慢病毒载体的构建及对膀胱癌T24细胞增殖,迁移和侵袭能力的影响 *[J]. 中国生物工程杂志, 2020, 40(3): 1-8.
[8] 雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.
[9] 王玥,牟彦双,刘忠华. 基于CRISPR/Cas系统的单碱基编辑技术研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 58-66.
[10] 王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.
[11] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.
[12] 王志敏,毕美玉,贺佳福,任炳旭,刘东军. CRISPR/Cas9系统的发展及其在动物基因编辑中的应用 *[J]. 中国生物工程杂志, 2020, 40(10): 43-50.
[13] 王刚,肖雨,李义,刘志刚,裴成利,武丽达,李艳丽,王希庆,张明磊,陈光,佟毅. ldhL-ldb0094基因敲除对保加利亚乳杆菌产L-乳酸的影响 *[J]. 中国生物工程杂志, 2019, 39(8): 66-73.
[14] 菅璐,黄映辉,梁天亚,王利敏,马洪涛,张婷,李丹阳,王明连. 利用CRISPR/Cas9技术建立敲除JAK2基因K562细胞系 *[J]. 中国生物工程杂志, 2019, 39(7): 39-47.
[15] 周松涛,陈蕴,龚笑海,金坚,李华钟. 利用CRISPR/Cas9技术构建稳定表达人白蛋白基因的中国仓鼠卵巢细胞系 *[J]. 中国生物工程杂志, 2019, 39(4): 52-59.