Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (8): 66-73    DOI: 10.13523/j.cb.20190809
技术与方法     
ldhL-ldb0094基因敲除对保加利亚乳杆菌产L-乳酸的影响 *
王刚1,2,肖雨1,李义2,刘志刚2,裴成利2,武丽达2,李艳丽1,王希庆1,张明磊1,陈光1,3,**(),佟毅2,**()
1 吉林农业大学生命科学学院 长春 130118
2 中粮集团吉林中粮生化有限公司 长春 130118
3 吉林农业大学秸秆生物学与利用教育部重点实验室 长春 130118
Effect of ldhL Gene Knock out Mutant on Lactobacillus delbrueckii subsp. blgaricus Producing L-lactic Acid
WANG Gang1,2,XIAO Yu1,LI Yi2,LIU Zhi-gang2,PEI Cheng-li2,WU Li-da2,LI Yan-li1,WANG Xi-qing1,ZHANG Ming-lei1,CHEN Guang1,3,**(),TONG Yi2,**()
1 College of Life Science, Jilin Agricultural University,Changchun 130118,China
2 Cofco Biochemical Co, LTD of Jilin, Changchun 130118,China
3 Key Laboratory for Straw Biology and Utilization of the Ministry of Education, Jilin Agricultural University,Changchun 130118,China
 全文: PDF(1556 KB)   HTML
摘要:

以保加利亚乳杆菌Lactobacillus delbrueckii subsp. bulgaricus CICC21101为出发菌株,利用PCR扩增L-乳酸脱氢酶(ldhL)基因上下游序列ldhL1ldhL2,获得ldhL基因缺失且包含上下游序列的片段,连接到乳酸菌专用温敏性基因敲除质粒pGhost4,将构建好的敲除载体电转入保加利亚乳杆菌CICC21101,低温筛选。结果表明,成功获得敲除ldhL基因的敲除突变株,敲除后的工程菌D-乳酸产量由30.5g/L降为4.8g/L,L-乳酸的产量由25.4g/L增至58.3g/L,光学纯度由54.56%增至90%。同时发现ldhL-ldb0094基因的敲除致使ldhL-ldb1020表达的上调,D-乳酸脱氢酶(ldbD)基因表达量没有变化,ldhL基因敲除株的成功构建将为进一步研究该基因在保加利亚乳杆菌中的功能及后续高光学活性D-乳酸工程菌构建奠定基础。

关键词: 保加利亚乳杆菌L-乳酸脱氢酶同源重组敲除pGhost4    
Abstract:

To construct ldhL gene deletion strain in Lactobacillus delbrueckii subsp. bulgaricus.Bulgaria lactobacillus CICC21101 was employed as the original strain, amplified the upstream sequence ldhL1 and downstream sequence ldhL2 by PCR, obtained successfully ldhL gene deletion fragment which includes both upstream and downstream sequence, then connected to knockout plasmid pGhost4, electricity to Bulgaria lactobacillus CICC21101, screening at low temperature. The results indicated that the ldhL gene knocked out deficient mutant was obtained.By gene knockout, the yield of D-lactic acid decreased from 30.5g/L to 4.8g/L, the yield of L-lactic acid increased from 25.4g/L to 58.3g/L, and the optical purity increased from 54.56% to 90%. It was a foundation to study the detail functions of ldh in Lactobacillus delbrueckii subsp. bulgaricus,it will lay the foundation of constuction on D-lactic acid engineering bacteria.

Key words: Lactobacillus delbrueckii subsp.bulgaricus    L-lactate dehydrogenase    Homologous recombination    Knock out    pGhost4
收稿日期: 2019-01-22 出版日期: 2019-09-18
ZTFLH:  Q93  
基金资助: *吉林省科技厅科技支撑项目(17MY057Z);长春市科技局地院合作项目(17DY015);吉林省秸秆科技创新平台项目[(2014)C-1];吉林省教育厅项目(JJKH20180683KJ)
通讯作者: 陈光,佟毅     E-mail: chg61@163.com;tongyi@cofco.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王刚
肖雨
李义
刘志刚
裴成利
武丽达
李艳丽
王希庆
张明磊
陈光
佟毅

引用本文:

王刚,肖雨,李义,刘志刚,裴成利,武丽达,李艳丽,王希庆,张明磊,陈光,佟毅. ldhL-ldb0094基因敲除对保加利亚乳杆菌产L-乳酸的影响 *[J]. 中国生物工程杂志, 2019, 39(8): 66-73.

WANG Gang,XIAO Yu,LI Yi,LIU Zhi-gang,PEI Cheng-li,WU Li-da,LI Yan-li,WANG Xi-qing,ZHANG Ming-lei,CHEN Guang,TONG Yi. Effect of ldhL Gene Knock out Mutant on Lactobacillus delbrueckii subsp. blgaricus Producing L-lactic Acid. China Biotechnology, 2019, 39(8): 66-73.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190809        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I8/66

图1  保加利亚乳杆菌丙酮酸代谢途径
图2  基于red-重组技术的ldh基因敲除策略
图3  重组克隆质粒PCR验证结果
图4  重组克隆质粒双酶切结果
图5  重组敲除质粒的验证电泳图
图6  工程菌pGhost-Δ ldh-L-F、pGhost-Δ ldh-R-R验证结果
图7  野生型与工程菌的生长曲线
菌种 D-乳酸(g/L) L-乳酸(g/L) 光学纯度(%)
原始菌种 30.5 25.4 54.56
工程菌DS-L 4.8 58.3 92.25
表1  敲除ldb0094对产酸性能的影响
图8  工程菌各基因表达量的测定结果
[1] Fukushima K, Sogo K, Miura S , et al. Production of D-lactic acid by bacterial fermentation of rice starch. Macromol Biosci, 2004,4(1):1021-1027.
[2] Yanez R, Moldes A B, Alonso J L , et al. Production of D-lactic acid from cellulose by simultaneous saccharification and fermentation using Lactobacillus coryniformis subsp.torquens. Biotechnol Lett, 2003,25(2):1161-1164.
[3] Tashiro Y, Kaneko W, Sun Y , et al. Continuous D-lactic acid production by a novel thermotolerant Lactobacillus delbrueckii subsp.lactis QU 41. Appl Microbiol Biotechnol, 2011,89(8):1741-1750.
[4] Saez-lara M J, Gomez-llorente C, Plaza-diaz J , et al. The role of probiotic Lactic acid bacteria and Bifidobacteria in the prevention and treatment of inflammatory bowel disease and other related diseases:a systematic review of randomized human clinical trials. Biomed Research International, 2015,2015(1):1-15.
[5] Hulston C J, Churnside A A, Venables M C . Probiotic supplementation prevents high-fat,overfeeding-induced insulin resistance in human subjects. British Journal of Nutrition, 2015,113(4):596-602.
[6] Prtty A, Lehtonen L, Kalliomki M , et al. Probiotic Lactobacillus rhamnosus GG therapy and microbiological programming in infantile colic:a randomized,controlled trial. Pediatric Research, 2015,78(4):470-475.
[7] Fong F L Y, shah N P, kirjavainen P , et al. Mechanism of action of probiotic bacteria on intestinal and systemic immunities and antigen-presenting cells. International Reviews of Immunology, 2016,35(3):179-188.
[8] Prtty A, Kalliomki M, Wacklin P , et al. A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood:a randomized trial. Pediatric Research, 2015,77(6):823-828.
[9] Bastani P, Homayouni A, Norouzi-panahi L , et al. The mechanisms of immune system regulation by probiotics in immune-related diseases. Journal of Pharmacy and Nutrition Sciences, 2016,6(3):105-111.
[10] 谭文君 . 保加利亚乳杆菌代谢途径中关键基因的克隆与序列分析. 天津:天津大学, 2009: 67-72.
Tan W J . Cloning and sequence analysis of key genes in the metabolic pathway of Lactobacillus bulgaricus. Tianin:Tianin University, 2009: 67-72.
[11] Wang L, Zhao B, Li F , et al. Highly efficient production of d-lactate by Sporolactobacillus sp.CASD with simultaneous enzymatic hydrolysis of peanut meal. Appl Microbiol Biotechnol, 2011,89(1):1009-1017.
[12] Zheng L, Liu M, Sun J , et al. Sodium ions activated phosphofructokinase leading to enhanced d-lactic acid production by Sporolactobacillus inulinus using sodium hydroxide as a neutralizing agent. Appl Microbiol Biotechnol, 2017,101(9):3677-3687.
[13] Silvia K, Norman K, Anja K , et al. Biotechnological production of enantiomerically pure d-lactic acid. Appl Microbiol Biotechnol, 2016,17(10):9423-9437.
[14] 李剑 . lactobacillus sp.MD1菌株乳酸脱氢酶基因的克隆表达及L和D乳酸工程菌的构建. 天津:南开大学, 2004.
Li J . Clone and expression of lactate dehydrogenase gene in Lactobacillus sp.MD1 strain and construction of L-lactic acid and D-lactic acid engineering bacteria. Tianjin: Nankai University, 2004.
[15] Kosaki M, Kawai K . Production of high optical purity D-lactic acid: US, 5466588, 1995-11-4[2019-07-31].
[16] 丁子建 . 芽孢乳杆菌发酵葡萄糖制备D-乳酸的研究. 南京: 南京工业大学, 2004: 35-38.
Ding Z J . Study on the production of d-lactic acid by lactobacillus from glucose. Nanjing: Nanjing University of Technology, 2004: 35-38.
[17] 李爽 . D-乳酸产生菌株的基因敲除. 天津: 天津大学, 2010: 78-82.
Li S . Gene knockout of d-lactic acid producing strain. Tianjin: Tianjin University, 2010: 78-82.
[18] 刘伟, 郑璞, 靳新娜 , 等. 阻断嗜乙酰乙酸棒杆菌乙酸合成途径对其在缺氧条件下产琥珀酸的影响. 中国生物工程杂志, 2014,34(9):48-55.
Liu W, Zheng P, Jin X N , et al. Effects of cutting off the acetic acid synthesis pathway of Rhodobacilus acetoacetate on succinic acid production under hypoxia. Chinese Journal of Biological Engineering, 2014,34(9):48-55.
[19] 李芬, 孙大庆, 张丽萍 , 等. 植物乳杆菌LY-78乳酸脱氢酶基因的生物信息学分析. 食品科学, 2017,38(8):102-106.
Li F, Sun D Q, Zhang L P , et al. Bioinformatics analysis of lactate dehydrogenase gene in lactobacillus Plantarum LY 78. Food Science, 2017,38(8):102-106.
[20] 许黎明, 成春燕, 吕军 , 等. 鼠李糖乳杆菌D-乳酸脱氢酶基因ldhD的敲除. 基因组学与应用生物学, 2016,35(6):1421-1427.
Xu L M, Cheng C Y, Lu J , et al. D-lactate dehydrogenase gene(LdhD) knockout in Lactobacillus rhamnosus. Genomics and Applied Biology, 2016,35(6):1421-1427.
[21] Qiu Z, Gao Q, Bao J , et al. Engineering Pediococcus acidilactici with xylose assimilation pathway for high titer cellulosic l-lactic acid fermentation. Bioresource Technology, 2018,249(3):9-15.
[22] 谭辉, 何小维, 周艳 , 等. 羧甲基纤维素钠与聚乳酸共混体系的研究. 现代食品科技, 2011,27(4):393-396.
Tan H, He X W, Zhou Y , et al. Study on blend system of carboxymethyl cellulose sodium and poly (lactic acid). Modern Food Science and Technology, 2011,27(4):393-396.
[23] Thapa L P, Lee S J, Park C , et al. Production of L-lactic acid from metabolically engineered strain of Enterobacter aerogenes ATCC 29007. Enzyme and Microbial Technology, 2017,102(1):1-8.
[24] Lee J W, In J H, Park J B , et al. Co-expression of two heterologous lactate dehydrogenases genes in Kluyveromyces marxianus for l-lactic acid production. Journal of Biotechnology, 2017,241(9):81-86.
[25] Wang X Q, Wang G, Yu X , et al. Pretreatment of corn stover by solid acid for d-lactic acid fermentation. Bioresource Technology, 2017,23(9):490-495.
[26] Freiding S, Gutsche K A, Ehrmann M A , et al. Genetic screening of Lactobacillus sakei and Lactobacillus curvatus strains for their peptidolytic system and amino acid metabolism,and comparison of their volatilomes in a model system. Systematic and Applied Microbiology, 2011,34(1):311-320.
[27] Shao Y, Wang Z, Bao Q , et al. Application of propidium monoazide quantitative real-time PCR to quantify the viability of Lactobacillus delbrueckii ssp. bulgaricus. Journal of Dairy Science, 2016,99(6):9570-9580.
[28] Jhan J K, Chang W F, Wang P M , et al. Production of fermented red beans with multiple bioactivities using co-cultures of Bacillus subtilis and Lactobacillus delbrueckii subsp. bulgaricus . LWT - Food Science and Technology, 2015,63(5):1281-1287.
[29] Regueira A, González C R, Ofiteru I D , et al. Electron bifurcation mechanism and homoacetogenesis explain products yields in mixed culture anaerobic fermentations. Water Research, 2018,141(8):349-356.
[30] Saini P, Beniwal A, Kokkiligadda A , et al. Response and tolerance of yeast to changing environmental stress during ethanol fermentation. Process Biochemistry, 2018,72(7):1-12.
[31] Simair A A, Qureshi A S, Simair S P , et al. An integrated bioprocess for xylanase production from agriculture waste under open non-sterilized conditions: Biofabrication as fermentation tool. Journal of Cleaner Production, 2018,193(4):194-205.
[32] Lu Z D, Lu M B, He F , et al. An economical approach for D-lactic acid production utilizing unpolished rice from aging paddy as major nutrient source. Bioresource Technology, 2009,100(6):2026-2031.
[33] Okano K, Zhang Q, Shinkawa S , et al. Efficient production of optically pure D-lactic acid from raw corn starch by using a genetically modified L-lactate dehydrogenase gene-deficient and α-amylase-secreting Lactobacillus plantarum strain. Applied and Environmental Microbiology, 2009,75(2):462-467.
[34] Ahring B K, Traverso J J, Murali N , et al. Continuous fermentation of clarified corn stover hydrolysate for the production of lactic acid at high yield and productivity. Biochemical Engineering Journal, 2016,109(109):162-169.
[35] Zhou S, Causey T B, Hasona A , et al. Production of optically pure d-lactic acid in mineral salts medium by metabolically engineered Escherichia coli W3110. Applied & Environmental Microbiology, 2003,69(1):399-407.
[1] 彭海丽,侯占铭. MDT1基因参与禾谷镰刀菌分生孢子发生和营养生长 *[J]. 中国生物工程杂志, 2020, 40(8): 10-18.
[2] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[3] 樊斌,陈欢,宋婉莹,陈光,王刚. 乳酸菌基因改造技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 84-92.
[4] 郭晶,侯占铭. Folpcs1基因对尖孢镰刀菌亚麻专化型的无性繁殖和营养生长的调控 *[J]. 中国生物工程杂志, 2020, 40(3): 48-64.
[5] 郭胜楠, 李信晓, 王峰, 刘昆梅, 丁娜, 扈启宽, 孙涛. 海马与新皮质组织特异性GABRG2基因敲除小鼠模型的构建及其在遗传性癫痫伴热性惊厥附加症中的初步研究 *[J]. 中国生物工程杂志, 2020, 40(3): 9-20.
[6] 于春洋,张春,郭乐,万盼盼,黄越,王峰,刘昆梅. 海马皮质特异性敲除AEG-1基因小鼠的构建及其行为学初步研究*[J]. 中国生物工程杂志, 2020, 40(11): 10-20.
[7] 郭超婧,朱琼,张新,李磊,张令强. 去泛素化酶OTUB1肝脏特异性基因敲除小鼠模型的构建与表型分析 *[J]. 中国生物工程杂志, 2019, 39(5): 80-87.
[8] 万颖寒,慈磊,王珏,龚慧,李俊,董茹,孙瑞林,费俭,沈如凌. PD-L1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2019, 39(12): 42-49.
[9] 吴果果,宋淑婷,岳荣,张晶,关莹,王玥,刘宝爱,吕学敏,魏建军,张会图. 反向筛选标记基因upp在杀真菌链霉菌遗传改造中的应用 *[J]. 中国生物工程杂志, 2019, 39(11): 78-86.
[10] 陆海燕,李佳蔓,孙思凡,章小毛,丁娟娟,邹少兰. CRISPR - Cas9系统介导的工业酵母营养缺陷型菌株构建 *[J]. 中国生物工程杂志, 2019, 39(10): 67-74.
[11] 苏春晓,张晓玉,曾晗,陈压西,阮雄中,杨萍. 肝脏特异性CD36基因敲除小鼠的制备及鉴定 *[J]. 中国生物工程杂志, 2018, 38(8): 26-33.
[12] 戴红苗,付业胜,张令强. 应用CRISPR/Cas9技术构建YOD1基因敲除小鼠 *[J]. 中国生物工程杂志, 2018, 38(6): 52-57.
[13] 盛玉瑞,李斌,王斌,左娣,马琳,任晓璠,郭乐,刘昆梅. 利用CRISPR/Cas9技术构建AEG-1基因敲除U251细胞系并探讨其转移行为的特点 *[J]. 中国生物工程杂志, 2018, 38(10): 38-47.
[14] 孙一平, 王越, 金镇, 王晓岩, 孙磊, 张璇, 冯冲, 周效华. SHBG基因敲除小鼠模型的建立及其表型分析[J]. 中国生物工程杂志, 2017, 37(8): 39-45.
[15] 战春君, 李翔, 刘国强, 刘秀霞, 杨艳坤, 白仲虎. 巴斯德毕赤酵母甘油转运体的发现及功能研究[J]. 中国生物工程杂志, 2017, 37(7): 48-55.