Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (4): 52-59    DOI: 10.13523/j.cb.20190407
技术与方法     
利用CRISPR/Cas9技术构建稳定表达人白蛋白基因的中国仓鼠卵巢细胞系 *
周松涛1,陈蕴2,龚笑海2,金坚2**(),李华钟1**()
1 江南大学生物工程学院 无锡 214122
2 江南大学药学院 无锡 214122
Using CRISPR/Cas9 Technology to Construct Human Serum Albumin CHO Stable Expression Cell Line
Song-tao ZHOU1,Yun CHEN2,Xiao-hai GONG2,Jian JIN2**(),Hua-zhong LI1**()
1 School of Biotechnology, Jiangnan University, Wuxi 214122, China
2 School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
 全文: PDF(1412 KB)   HTML
摘要:

通过目的基因的随机整合方式,构建得到的CHO表达细胞系,常会因为目的基因插入到染色体内不稳定区域,而在长期传代过程中出现表达不稳定的现象,这主要是由于位点效应所导致的。为了解决这个问题,现利用CRISPR/Cas9技术介导的同源重组,将目的基因直接整合于CHO细胞染色体上的稳定表达区域,以克服位点效应带来的CHO表达细胞系的长期表达不稳定。利用该技术总共获得了2株外源基因(人白蛋白基因)定点整合细胞系;Western blot结果显示,细胞上清液的产物具有人白蛋白抗原性;细胞在贴壁状态下,两株细胞系在第3、12、23、35、50代,细胞每日表达的HSA质量接近,且均维持在0.5pg cell/d;选取一株表达细胞系,经悬浮驯化后,在批次条件培养下,第1、25、50代的悬浮细胞,在摇瓶内的表达浓度均稳定在13~14mg/L。显示了将外源基因定点整合于CHO细胞基因组内的可行性;且外源基因整合在稳定表达区域后,重组细胞系具有对外源基因长期表达的稳定性。

关键词: 中国仓鼠卵巢细胞定点整合CRISPR/Cas9蛋白质表达    
Abstract:

The expression cell lines constructed by random integrating target gene into mammal cell’s genome may not express the target gene stably over passages because the target gene might be inserted into unstable region of chromatin, which is known as position effect. To solve this problem, site specific integration of target gene (Human serum albumin gene) into stable hot spot of CHO chromatin by using homologous dependent recombination (HDR) method mediated by CRISPR/Cas9 can be effective, because the position effect issue can be overcome. Here, two site specific integration hits of human serum albumin gene were obtained verified by conducting 5' junction PCR, 3' junction PCR and out-out PCR. The Western blot results revealed target protein could be detected in the supernatants of culture; the average amount of HSA protein expressed per cell per day was around 0.5pg cell/d over different cell passages (passage 3, 12, 23, 35, 50) at adherent cell mode for both two hits. One hit was adapted to suspension culture. The expression level of this hit at batch mode in different cell passages (passage 1, 25, 50) were stably around 13-14mg/L.It was feasible to insert heterogenous gene into the stable hot spot of CHO cell line and corresponding gene expression level was stable over passages.

Key words: CHO    Site specific integration    CRISPR/Cas9    Protein expression
收稿日期: 2018-11-30 出版日期: 2019-05-08
ZTFLH:  Q819  
基金资助: * 国家高技术研究发展计划资助项目(2014AA021003);国家高技术研究发展计划资助项目(2015AA020802)
通讯作者: 金坚,李华钟     E-mail: jianjin@jiangnan.edu.cn;hzhli@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周松涛
陈蕴
龚笑海
金坚
李华钟

引用本文:

周松涛,陈蕴,龚笑海,金坚,李华钟. 利用CRISPR/Cas9技术构建稳定表达人白蛋白基因的中国仓鼠卵巢细胞系 *[J]. 中国生物工程杂志, 2019, 39(4): 52-59.

Song-tao ZHOU,Yun CHEN,Xiao-hai GONG,Jian JIN,Hua-zhong LI. Using CRISPR/Cas9 Technology to Construct Human Serum Albumin CHO Stable Expression Cell Line. China Biotechnology, 2019, 39(4): 52-59.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190407        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I4/52

引物名称 目的 序列信息5'-3'
ooPCR_fwd 5' junction PCR, ooPCR引物及测序 GCTACTCACCAAGTGCAGC
HSA_rev 5' junction PCR引物及测序 GGCAGCTTTATCAGCAGCTTG
Puro_fwd 3' junction PCR引物 GAGGAAGTCTTCTAACATGCG
ooPCR_rev 3' junction PCR, ooPCR引物及测序 GGGTGGGCTAAGTACAAGG
HSA_fwd 测序 GGTTGATGTGATGTGCACTG
EF1_rev 测序 CGGCGACTACTGCACTTATA
表1  定点整合验证相关PCR引物
图1  测序峰图显示sgRNA可引导Cas9靶向切割目标基因组序列
图2  HSA供体质粒图例及HSA基因定点整合到CHO基因组内的热点示意图
图3  HSA定点整合单克隆细胞验证
表2  HSA基因定点整合测序结果[含CMV启动子与SV40 poly(A)序列]
图4  HSA定点整合细胞系蛋白质表达鉴定及表达水平检测
图5  HSA定点整合细胞系的悬浮驯化与悬浮细胞系HSA表达水平检测
[1] Wurm F M . Production of recombinant protein therapeutics in cultivated mammalian cells. Nature Biotechnology, 2004,22(11):1393-1398.
doi: 10.1038/nbt1026 pmid: 15529164
[2] Wurm F M, Hacker D . First CHO genome. Nature Biotechnology, 2011,29(8):718-720.
doi: 10.1038/nbt.1943
[3] Kim J, Kim Y G, Lee G . CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Applied Microbiology & Biotechnology, 2012,93(3):917-930.
doi: 10.1007/s00253-011-3758-5 pmid: 22159888
[4] Fischer S, Handrick R, Otte K . The art of CHO cell engineering: A comprehensive retrospect and future perspectives. Biotechnology Advances, 2015,33(8):1878-1896.
doi: 10.1016/j.biotechadv.2015.10.015 pmid: 26523782
[5] Wilson C, Bellen H J, Gehring W J . Position effects on eukaryotic gene expression. Annual Review of Cell Biology, 1990,6(1):679-714.
doi: 10.1146/annurev.cb.06.110190.003335 pmid: 2275824
[6] Lee J S, Kallehauge T B, Pedersen L E , et al. Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway. Scientific Reports, 2015,5:8572.
doi: 10.1038/srep08572 pmid: 4339809
[7] Jakociunas T, Jensen M K, Keasling J D . CRISPR/Cas9 advances engineering of microbial cell factories. Metabolic Engingeering, 2016,34:44-59.
doi: 10.1016/j.ymben.2015.12.003 pmid: 26707540
[8] Lee J S, Grav L M, Pedersen L E , et al. Accelerated homology-directed targeted integration of transgenes in Chinese hamster ovary cells via CRISPR/Cas9 and fluorescent enrichment. Biotechnology Bioengineering, 2016,113(11):2518-2523.
doi: 10.1002/bit.26002 pmid: 27159230
[9] Kito M, Itami S, Fukano Y , et al. Construction of engineered CHO strains for high-level production of recombinant proteins. Applied Microbiology & Biotechnology, 2002,60(4):442-448.
doi: 10.1007/s00253-002-1134-1 pmid: 12466885
[10] Gao J, Cha S, Jonsson R , et al. Detection of anti-type 3 muscarinic acetylcholine receptor autoantibodies in the sera of Sjogren’s syndrome patients by use of a transfected cell line assay. Arthritis Rheum, 2004,50(8):2615-2621.
doi: 10.1002/art.20371
[11] Huang Y, Li Y, Wang Y G , et al. An efficient and targeted gene integration system for high-level antibody expression. Journal of Immunological Methods, 2007,322(1):28-39.
doi: 10.1016/j.jim.2007.01.022 pmid: 17350648
[12] Schwenk F, Baron U, Rajewsky K , et al. A cre-transgenic mouse strain for the ubiquitous deletion of loxp-flanked gene segments including deletion in germ cells. Nucleic Acid Research, 1995,23(24):5080-5081.
doi: 10.1093/nar/23.24.5080
[13] Yang-Nim P, Daniel M, Eisenberg E , et al. Application of the FLP/FRT system for conditional gene deletion in yeast Saccharomyces cerevisiae. Yeast, 2011,28(9):673-681.
doi: 10.1002/yea.1895 pmid: 3169912
[14] Cong L, Ran F A, Cox D , et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013,339(6121):819-823.
doi: 10.1126/science.1231143
[15] Lee J S, Grav L M, Lewis N E , et al. CRISPR/Cas9-mediated genome engineering of CHO cell factories: Application and perspectives. Biotechnology Journal, 2015,10(7):979-994.
doi: 10.1002/biot.201500082 pmid: 26058577
[16] Mali P, Yang L, Esvelt K M , et al. RNA-guided human genome engineering via Cas9. Science, 2013,339(6121):823-826.
doi: 10.1126/science.1232033 pmid: 3712628
[17] Hockemeyed D, Soldner F, Beard C , et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nature Biotechnology, 2009,27(9):851-857.
doi: 10.1038/nbt.1562 pmid: 19680244
[18] Zhou S T, Ding XF, Yang L , et al. Discover stable expression hot spot in genome of Chinese Hasmter ovary cells using lentivirus based random integration method. [2018-11-14].
[19] Stemmer M, Thumger T, Del S , et al. CCTop: An intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One, 2015,10(4):e0124633.
doi: 10.1371/journal.pone.0124633 pmid: 4409221
[20] Takata Y, Kondo S, Goda N , et al. Comparison of efficiency between FLPe and Cre for recombinase-mediated cassette exchange in vitro and in adenovirus vector production. Genes to Cells, 2011,16(7):765-777.
doi: 10.1111/j.1365-2443.2011.01526.x pmid: 21707874
[21] Xu D, Chen Y, Jin J . Effect of signal peptide on the expression and secretion of hepatocyte growth factor in CHO. Chinese Journal of Cell Biology, 2016,38(12):1-7.
[22] Gilbert L A, Horlbeck M A, Adamson B , et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell, 2014,159(3):647-661.
doi: 10.1016/j.cell.2014.09.029 pmid: 25307932
[23] Shalem O, Sanjana N E, Hartenian E , et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science, 2014,343(6166):84-87.
doi: 10.1126/science.1247005
[24] Wang T, Wei J J, Sabatini D M , et al. Genetic screens in human cells using the CRISPR-Cas9 system. Science, 2014,343(6166):80-84.
doi: 10.1126/science.1246981
[1] 武秀知,王宏杰,祖尧. 斑马鱼hoxa1a基因调控颅面骨骼发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(9): 20-26.
[2] 毕博,张宇,赵慧. 酵母杂交系统在CRISPR/Cas9基因编辑系统脱靶率研究中的应用*[J]. 中国生物工程杂志, 2021, 41(6): 27-37.
[3] 郭洋,陈艳娟,刘怡辰,王海杰,王成稷,王珏,万颖寒,周宇,奚骏,沈如凌. Pd-1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2021, 41(10): 1-11.
[4] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[5] 胡益波,皮畅钰,张哲,向柏宇,夏立秋. 丝状真菌蛋白表达系统研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 94-104.
[6] 黄胜, 严启滔, 熊仕琳, 彭弈骐, 赵蕊. 基于CRISPR/Cas9-SAM系统CHD5基因过表达慢病毒载体的构建及对膀胱癌T24细胞增殖,迁移和侵袭能力的影响 *[J]. 中国生物工程杂志, 2020, 40(3): 1-8.
[7] 王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.
[8] 孔建涛,庄英萍,郭美锦. 基于DOE设计和氨基酸补加策略提高CHO细胞表达抗CD20单克隆抗体*[J]. 中国生物工程杂志, 2020, 40(12): 41-48.
[9] 雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.
[10] 王玥,牟彦双,刘忠华. 基于CRISPR/Cas系统的单碱基编辑技术研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 58-66.
[11] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.
[12] 王志敏,毕美玉,贺佳福,任炳旭,刘东军. CRISPR/Cas9系统的发展及其在动物基因编辑中的应用 *[J]. 中国生物工程杂志, 2020, 40(10): 43-50.
[13] 菅璐,黄映辉,梁天亚,王利敏,马洪涛,张婷,李丹阳,王明连. 利用CRISPR/Cas9技术建立敲除JAK2基因K562细胞系 *[J]. 中国生物工程杂志, 2019, 39(7): 39-47.
[14] 万颖寒,慈磊,王珏,龚慧,李俊,董茹,孙瑞林,费俭,沈如凌. PD-L1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2019, 39(12): 42-49.
[15] 刘赛宝,李亚芳,王辉,王伟,冉多良,陈洪岩,孟庆文. 利用CRISPR/Cas9技术构建流感病毒高产细胞系MDCK-Tpl2 -/-*[J]. 中国生物工程杂志, 2019, 39(1): 46-54.