Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (7): 39-47    DOI: 10.13523/j.cb.20190706
技术与方法     
利用CRISPR/Cas9技术建立敲除JAK2基因K562细胞系 *
菅璐,黄映辉,梁天亚,王利敏,马洪涛,张婷,李丹阳,王明连()
北京工业大学 北京 100020
Generation of JAK2 Gene Knockout K562 Cell Line by CRISPR/Cas9 System
Lu JIAN,Ying-hui HUANG,Tian-ya LIANG,Li-min WANG,Hong-tao MA,Ting ZHANG,Dan-yang LI,Ming-lian WANG()
Beijing University of Technology, Beijing 100020, China
 全文: PDF(2052 KB)   HTML
摘要:

目的 利用CRISPR/Cas9技术对K562细胞系JAK2基因进行编辑,构建JAK2基因敲除的K562细胞系。方法 使用CRISPR在线设计工具,针对JAK2基因设计sgRNA,构建Cas9-sgRNA共表达质粒。使用第二代慢病毒包装系统包装慢病毒并感染K562细胞,提取细胞基因组DNA,Sanger测序和TA克隆检测基因编辑活性。无限稀释法将编辑阳性的细胞接种于96孔板并扩培得到单克隆细胞株,提取基因组DNA,Sanger测序和TA克隆分析敲除JAK2单克隆细胞的基因型。结果 成功构建靶向敲除JAK2基因的lentiCRISPRv2-sgRNA3-1质粒。优化方案得到低细胞毒性高转染效率的感染K562细胞慢病毒量。CRISPR/Cas9系统成功在JAK2基因sgRNA3-1识别位点发挥基因组编辑活性,获得纯合敲除JAK2基因细胞株K562-JAK2 -/-(两个等位分别发生移码突变,预期编码没有功能的JAK2蛋白)。结论 CRIAPR/Cas9系统通过慢病毒感染方式获得JAK2基因纯合敲除的K562细胞株,该细胞模型可用于研究在慢性髓系白血病中JAK2基因的作用,为构建K562敲除其他基因细胞系提供实验依据,为探究造血分化机制的研究奠定实验基础。

关键词: CRISPR/Cas9系统JAK2基因K562细胞慢病毒    
Abstract:

Objective: To generate a JAK2 knockout K562 cell line by CRISPR/Cas9 gene editing system.Methods: Using CRISPR online design tool, sgRNA was designed targeted to JAK2 gene and used to construct the co-expression plasmid of Cas9-sgRNA. Lentivirus was packaged by the second-generation lentivirus packaging system and used to transduce K562 cells, the genomic DNA of cell pool was extracted, and the gene editing activity was detected by Sanger sequencing and TA cloning. The candidate edited cells were inoculated into 96-well plate by infinite dilution method. Then the cells were expanded to extract genomic DNA. The JAK2 sequence was identified by Sanger sequencing and TA cloning.Results: LentiCRISPRv2-sgRNA3-1 plasmid containing the gene editing tools for koncking out JAK2 was constructed. The optimal dose of lentivirus with low cytotoxicity and high transduction efficiency was obtained. The JAK2 gene knockout K562 cell line (K562-JAK2 -/-) was successfully generated.Conclusion: Lentivirus transduction-based CRISPR/Cas9 system was successfully used to generate JAK2 gene homozygous knockout K562 cell line, providing a cell model to study the importance of JAK2 gene in the field of chronic myeloid leukemia. Besides, the lentivirus transduction-based CRISPR/Cas9 protocol reported here lays a foundation for constructing other gene knockout K562 cell lines to study of hematopoietic differentiation mechanism.

Key words: CRISPR/Cas9 system    JAK2 gene    K562 cells    Lentivirus
收稿日期: 2018-12-06 出版日期: 2019-08-05
ZTFLH:  Q789  
基金资助: * 北京市自然科学基金面上项目资助项目(7182011)
通讯作者: 王明连     E-mail: mlw@bjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
菅璐
黄映辉
梁天亚
王利敏
马洪涛
张婷
李丹阳
王明连

引用本文:

菅璐,黄映辉,梁天亚,王利敏,马洪涛,张婷,李丹阳,王明连. 利用CRISPR/Cas9技术建立敲除JAK2基因K562细胞系 *[J]. 中国生物工程杂志, 2019, 39(7): 39-47.

Lu JIAN,Ying-hui HUANG,Tian-ya LIANG,Li-min WANG,Hong-tao MA,Ting ZHANG,Dan-yang LI,Ming-lian WANG. Generation of JAK2 Gene Knockout K562 Cell Line by CRISPR/Cas9 System. China Biotechnology, 2019, 39(7): 39-47.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190706        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I7/39

图1  lentiCRISPRv2-sgRNA3-1质粒构建与鉴定
Target site name sgRNA3-1
Target sequence CATTTCTGTCATCGTAAGGCAGG
sgRNA oligo sense sequence(5'-3') caccgCATTTCTGTCATCGTAAGGC
sgRNA oligo antisense sequence(5'-3') aaacGCCTTACGATGACAGAAATGc
表1  sgRNA 序列
图2  Chemfect介导pX458质粒转染K562
图3  嘌呤霉素药物筛选梯度体积慢病毒毒液感染K562细胞(部分)
图4  慢病毒感染后K562细胞池sgRNA3-1靶向识别位点附近的基因突变鉴定
图5  Sanger测序的色谱图显示单克隆细胞株B的JAK2的部分基因组序列
图6  K562-JAK2-/-细胞系功能验证实验
[1] Samanta A, Perazzona B, Chakraborty S , et al. Janus kinase 2 regulates Bcr-Abl signaling in chronic myeloid leukemia. Leukemia, 2011,25(3):463-472.
[2] Chen M, Gallipoli P, Degeer D , et al. Targeting primitive chronic myeloid leukemia cells by effective inhibition of a new AHI-1-BCR-ABL-JAK2 complex. Journal of the National Cancer Institute, 2013,105(6):405-423.
doi: 10.1093/jnci/djt006
[3] Warsch W, Grundschober E, Berger A , et al. STAT5 triggers BCR-ABL1 mutation by mediating ROS production in chronic myeloid leukaemia. Oncotarget, 2012,3(12):1669-1687.
[4] James C, Ugo V, Le Couédic J P , et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature, 2005,434(7037):1144-1148.
[5] Hartlerode A J, Scully R . Mechanisms of double-strand break repair in somatic mammalian cells. Biochemical Journal, 2009,423(2):157-168.
doi: 10.1042/BJ20090942
[6] Chandrasegaran S . Recent advances in the use of ZFN-mediated gene editing for human gene therapy. Cell & Gene Therapy Insights, 2017,3(1):33-41.
[7] Zhang Z, Wu W S . Application of TALE-Based approach for dissecting functional microRNA-302/367 in cellular reprogramming. Methods Mol Biol, 2018,1733:255-263.
doi: 10.1007/978-1-4939-7601-0
[8] Jinek M, Chylinski K, Fonfara I , et al. A programmable Dual-RNA-Guided DNA endonuclease in adaptive bacterial immunity. Science, 2012,337(6096):816-821.
doi: 10.1126/science.1225829
[9] Ran Fa, Hsu P D, Wright J , et al. Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 2013,8(11):2281-2308.
[10] Shen B . Generation of gene-modified mice via cas9/RNA-mediated gene targeting. Cell Research, 2013,23(5):720-723.
[11] Niu Y, Shen B, Cui Y , et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell, 2014,156(4):836-843.
doi: 10.1016/j.cell.2014.01.027
[12] Sánchez-Rivera F J, Papagiannakopoulos T, Romero R , et al. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature, 2014,516(7531):428-431.
[13] Liao H K, Gu Y, Diaz A , et al. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nature Communications, 2015,6(1):6413.
[14] Kotterman M A, Schaffer D V . Engineering adeno-associated viruses for clinical gene therapy. Nature Reviews Genetics, 2014,15(7):445-451.
[15] Xu L, Yang H, Gao Y , et al. CRISPR/Cas9-Mediated CCR5 ablation in Human hematopoietic stem/progenitor cells confers HIV-1 resistance in vivo. Molecular Therapy, 2017,25(8):1782.
doi: 10.1016/j.ymthe.2017.04.027
[16] Neviani P, Harb J G, Oaks J J , et al. PP2A-activating drugs selectively eradicate TKI-resistant chronic myeloid leukemic stem cells. Journal of Clinical Investigation, 2013,123(10):4144-4157.
doi: 10.1172/JCI68951
[17] Warsch W, Grundschober E, Sexl V . Adding a new facet to STAT5 in CML:multitasking for leukemic cells. Cell Cycle, 2013,12(12):2.
[18] Weber A, Borghouts C, Brendel C , et al. Stat5 exerts distinct, vital functions in the cytoplasm and nucleus of Bcr-Abl+ K562 and Jak2(V617F)+ HEL leukemia cells. Cancers, 2015,7(1):503.
doi: 10.3390/cancers7010503
[19] Gallipoli P, Cook A, Rhodes S , et al. JAK2/STAT5 inhibition by nilotinib with ruxolitinib contributes to the elimination of chronic phase CML CD34 + cells in vitro and in vivo. Blood, 2014,124(9):1492-501.
doi: 10.1182/blood-2013-12-545640
[20] Zetsche B, Gootenberg J S, Abudayyeh O O , et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 2015,163(3):759-771.
doi: 10.1016/j.cell.2015.09.038
[21] Abudayyeh O O, Gootenberg J S, Essletzbichler P , et al. RNA targeting with CRISPR-Cas13. Nature, 2017,550(7675):280-284.
[22] Mali P, Aach J, Stranges P B , et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology, 2013,31(9):833-838.
[23] Rees H A, Komor A C, Yeh W H , et al. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nature Communications, 2017,8(1):15790.
[24] Rees H A, Liu D R . Base editing: precision chemistry on the genome and transcriptome of living cells. Nature Reviews Genetics, 2018,19(1):770-788.
doi: 10.1038/s41576-018-0059-1
[25] Shao Y, Guan Y, Wang L , et al. CRISPR/Cas-mediated genome editing in the rat via direct injection of one-cell embryos. Nature Protocols, 2014,9(10):2493-2512.
[26] Song B, Fan Y, He W , et al. Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system. Stem Cells and Development, 2015,24(9):1053-1065.
doi: 10.1089/scd.2014.0347
[1] 赵晓煜,徐祺玲,赵晓东,安云飞. 基因治疗慢病毒载体的转导增强策略*[J]. 中国生物工程杂志, 2021, 41(8): 52-58.
[2] 钱昱,丁晓雨,刘志强,袁增强. 基因修饰人多能干细胞的高效单克隆建系方法[J]. 中国生物工程杂志, 2021, 41(8): 33-41.
[3] 毕博,张宇,赵慧. 酵母杂交系统在CRISPR/Cas9基因编辑系统脱靶率研究中的应用*[J]. 中国生物工程杂志, 2021, 41(6): 27-37.
[4] 陶守松,任广明,尹荣华,杨晓明,马文兵,葛志强. 敲低去泛素化酶USP13抑制K562细胞的增殖*[J]. 中国生物工程杂志, 2021, 41(5): 1-7.
[5] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[6] 黄胜, 严启滔, 熊仕琳, 彭弈骐, 赵蕊. 基于CRISPR/Cas9-SAM系统CHD5基因过表达慢病毒载体的构建及对膀胱癌T24细胞增殖,迁移和侵袭能力的影响 *[J]. 中国生物工程杂志, 2020, 40(3): 1-8.
[7] 马占兵,党洁,杨继辉,霍正浩,徐广贤. 基于慢病毒系统的双荧光标记多功能自噬流监测系统建立与应用 *[J]. 中国生物工程杂志, 2019, 39(5): 88-95.
[8] 韩亚丽,杨冠恒,陈雁雯,龚秀丽,张敬之. 表达β-珠蛋白基因的安全性慢病毒载体的优化 *[J]. 中国生物工程杂志, 2018, 38(7): 50-57.
[9] 代玉环, 徐尧, 罗颖, 代洋, 石伟林, 徐瑶. Myocardin调控心肌H9C2细胞Ca2+通道机制研究[J]. 中国生物工程杂志, 2016, 36(11): 1-6.
[10] 高越, 檀硕, 任兆瑞, 张敬之. 原位染色检测慢病毒载体转录通读方法的建立[J]. 中国生物工程杂志, 2015, 35(5): 55-60.
[11] 刘雪杰, 林巍然, 唐立春, 孙薇, 魏汉东, 姜颖. 慢病毒载体介导RAB27A基因过表达对人HepG2肝癌细胞增殖的影响[J]. 中国生物工程杂志, 2014, 34(9): 16-23.
[12] 李玉强, 朱志图, 王巍, 李谌, 徐娜, 王钰, 李男, 孙宏治. RNA干扰NUP88基因对人乳腺癌MCF-7细胞生长及侵袭力的影响[J]. 中国生物工程杂志, 2014, 34(9): 31-39.
[13] 秦瑶, 赵鸿彦, 张文航, 王冬梅. 线粒体转录因子A敲低转基因小鼠的研制[J]. 中国生物工程杂志, 2014, 34(7): 44-48.
[14] 付辉, 李菲菲, 马琼, 付怀秀, 崔玉芳, 毛建平. 逆转录法筛选mRNA靶点设计核酶对GPA的表达干预实验研究[J]. 中国生物工程杂志, 2014, 34(3): 84-90.
[15] 王鑫, 陈玲, 孙飞, 陆航. RNAi沉默CXCR7对人结肠癌细胞SW620特异性靶向抑制的实验研究[J]. 中国生物工程杂志, 2014, 34(2): 14-20.