Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (6): 12-19    DOI: 10.13523/j.cb.2202035
研究报告     
CHO细胞基因组NW-003614092.1内稳定表达位点的发现*
瞿丽丽1,丁学峰2,蔡燕飞1,鲁晨1,李华钟2,金坚1,陈蕴1,**()
1.江南大学生命科学与健康工程学院 无锡 214122
2.江南大学生物工程学院 无锡 214122
Discovery of Stable Expression Sites in CHO Genome NW-003614092.1
QU Li-li1,DING Xue-feng2,CAI Yan-fei1,LU Chen1,LI Hua-zhong2,JIN Jian1,CHEN Yun1,**()
1. School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China
2. School of Biotechnology, Jiangnan University, Wuxi 214122, China
 全文: PDF(3698 KB)   HTML
摘要:

目的:获得中国仓鼠卵巢细胞(Chinese hamster ovary cells,CHO)内稳定表达位点信息,为构建重组蛋白CHO稳定表达株、缩短研发时间线提供信息明确的稳定位点。方法:对慢病毒随机整合Zsgreen1基因的具有潜在稳定表达位点的CHO-K1-1d2细胞株进行连续传代培养,验证表达稳定性;通过染色体步移分析慢病毒载体整合位点,并利用CRISPR/Cas9技术验证位点的可编辑性。结果:CHO-K1-1d2细胞在连续贴壁培养20代、悬浮培养50代过程中,能够100 %发绿色荧光,且荧光强度稳定,能够稳定表达Zsgreen1蛋白;染色体步移分析测序结果表明,CHO-K1-1d2细胞中慢病毒载体整合于CHO细胞基因组NW-003614092.1上第1 159 463与1 159 467碱基间;共转染sgRNA与Cas9质粒后,测序结果表明,该位点可被CRISPR/Cas9技术编辑。结论:CHO细胞基因组NW-003614092.1内存在一个信息明确的、能够被CRISPR/Cas9技术编辑的稳定表达位点。

关键词: CHO稳定位点染色体步移CRISPR/Cas9    
Abstract:

Objective: The purpose is to provide a stable expression site with clear information for constructing a Chinese hamster ovary cell (CHO) line stably expressing recombinant protein by site-specific integration and shortening the research and development timeline. Methods: The CHO-K1-1d2 cell line with potential stable expression site randomly integrated with Zsgreen1 gene by lentivirus was continuously subcultured to verify the stability of expression; the integration site of lentiviral vector was analyzed by chromosome walking, and the editability of the site was verified by CRISPR/Cas9 technology. Results: 100% of CHO-K1-1d2 cells could emit green fluorescence and the fluorescence intensity was stable in the process of continuous adherent culture for 20 generations and suspension culture for 50 generations, indicating that Zsgreen1 protein could be stably expressed. The sequence results in chromosome walking analysis showed that the antiviral vectors were integrated between bases 1 159 463 and 1 159 467 of the CHO cell genome NW-003614092.1. The sequence results after co-transfection of sgRNA and Cas9 plasmid in CHO-K1 cells showed that this site can be edited by CRISPR/Cas9 technology. Conclusion: There is a stable expression site in CHO cell genome NW-003614092.1, which has clear information and can be edited by CRISPR/Cas9 technology.

Key words: CHO    Stable sites    Genome walking    CRISPR/Cas9
收稿日期: 2022-02-21 出版日期: 2022-07-07
ZTFLH:  Q813  
基金资助: *国家高技术研究发展计划(2015AA020802)
通讯作者: 陈蕴     E-mail: chenyun72@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
瞿丽丽
丁学峰
蔡燕飞
鲁晨
李华钟
金坚
陈蕴

引用本文:

瞿丽丽,丁学峰,蔡燕飞,鲁晨,李华钟,金坚,陈蕴. CHO细胞基因组NW-003614092.1内稳定表达位点的发现*[J]. 中国生物工程杂志, 2022, 42(6): 12-19.

QU Li-li,DING Xue-feng,CAI Yan-fei,LU Chen,LI Hua-zhong,JIN Jian,CHEN Yun. Discovery of Stable Expression Sites in CHO Genome NW-003614092.1. China Biotechnology, 2022, 42(6): 12-19.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2202035        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I6/12

Primer Primer sequence (5'→3')
AP1 GTAATACGCTCACTATAGGGC
LSP1 GCTTCAGCAAGCCGAGTCCTGCGTCGAG
AP2 ACTATAGGGCACGCGTGGT
LSP2 GCTCCTCTGGTTTCCCTTTCGCTTTCAA
表1  染色体步移引物序列
Primer Primer sequence(5' →3')
SP1 GGCAGAGAAAGATAGGCTGGAAAC
ZsP1 CCAGTTGTCGGTCATCTTCTTCATC
SP2 CATTACTCCTACTAGCCACCACATG
ZsP2 CATGTACCACGAGTCCAAGTTCTAC
表2  位点验证引物序列
图1  整合位点验证示意图
图2  CHO-K1-1d2细胞贴壁培养20代Zsgreen1蛋白表达情况
图3  CHO-K1-1d2细胞悬浮培养50代Zsgreen1蛋白表达情况
图4  二级PCR产物琼脂糖凝胶电泳结果
Sequence (5' →3')
TAAAATTTTATTCTTTCTCTAAAGTTTCATAAATATGTTTTGATAATGTTTAGGTCCCTCTCCAAACTCTTCCTGATAAGGGTTCCAGGTATGGCT
TCATCTATGGAGTAGGAGTCATATTCAATCAGAAAGTGTCTGTGTTCTTCCATGGGGTTCTGGAAGGGCTAATTCACTCCCAACGAAGACAAGA
TATCCTTGATCTGTGGATCTACCACACACAAGGCTACTTCCCTGATTAGCAGAACTACACACCAGGGCCAGGGGTCAGATATCCACTGACCTTT
GGATGGTGCTACAAGCTAGTACCAGTTGAGCCAGATAAGGTAGAAGAGGCCAATAAAGGAGAGAACACCAGCTTGTTACACCCTGTGAGCCTG
CATGGGATGGATGACCCGGAGAGAGAAGTGTTAGAGTGGAGGTTTGACAGCCGCCTAGCATTTCATCACGTGGCCCGAGAGCTGCATCCGGAG
TACTTCAAGAACTGCTGATATCGAGCTTGCTACAAGGGACTTTCCGCTGGGGACTTTCC
表3  二级PCR产物测序结果
图5  整合位点验证PCR产物琼脂糖凝胶电泳结果
Sequencing primer Sequence (5' →3')
SP1 TGTTTTGATAATGTTTAGGTCCCTCTCCAAACTCTTCCTGATAAGGGTTCCAGGTATGGCTTCATCTATGGAGTAGGAG
TCATATTCAATCAGAAAGTGTCTGTGTTCTTCCATGGGGTTCTGGAAGGGCTAATTCACTCCCAACGAAGACAAGATA
TCCTTGATCTGTGGATCTACCACACACAAGGCTACTTCCCTGATTAGCAGAAC
SP2 CTTTCATAGTTCTTAGCATGCTTCCAGAGGGGAAAATGATCACAAGTCATACCCAGCATGGAATCCCATGACCTACAA
AGACTGGGCTGGAAAGACATGCTCCCAAGTCTAATACTTGTATGAACCTGCTAGAGATTTTCCACACTGACTAAAAGG
GTCTGAGGGATCTCTAGTTACCAGAGTCACACAACAGACGGGCACACACTACTT
表4  位点验证测序结果
图6  位点可编辑性验证
[1] Matasci M, Hacker D L, Baldi L, et al. Recombinant therapeutic protein production in cultivated mammalian cells: current status and future prospects. Drug Discovery Today: Technologies, 2008, 5(2-3): e37-e42.
[2] Sergeeva D, Camacho-Zaragoza J M, Lee J S, et al. CRISPR/Cas9 as a genome editing tool for targeted gene integration in CHO cells. Methods in Molecular Biology (Clifton, N J), 2019, 1961: 213-232.
[3] Kim J Y, Kim Y G, Lee G M. CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Applied Microbiology and Biotechnology, 2012, 93(3): 917-930.
doi: 10.1007/s00253-011-3758-5
[4] Wurm M J, Wurm F M. Naming CHO cells for bio-manufacturing: genome plasticity and variant phenotypes of cell populations in bioreactors question the relevance of old names. Biotechnology Journal, 2021, 16(7): 2100165.
doi: 10.1002/biot.202100165
[5] Lee J S, Kallehauge T B, Pedersen L E, et al. Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway. Scientific Reports, 2015, 5: 8572.
doi: 10.1038/srep08572
[6] Wurm F. CHO quasi species-implications for manufacturing processes. Processes, 2013, 1(3): 296-311.
doi: 10.3390/pr1030296
[7] Fan Y J, Jiang W, Ran F L, et al. An efficient exogenous gene insertion site in CHO cells with high transcription level to enhance AID-induced mutation. Biotechnology Journal, 2020, 15(5): e1900313.
[8] Hamaker N K, Lee K H. A site-specific integration reporter system that enables rapid evaluation of CRISPR/Cas9-mediated genome editing strategies in CHO cells. Biotechnology Journal, 2020, 15(8): e2000057.
[9] 胡湾湾, 丁学峰, 蔡燕飞, 等. 外源蛋白在CHO细胞染色体上一个新位点的定点整合和稳定表达. 中国药科大学学报, 2021, 52(4): 487-495.
Hu W W, Ding X F, Cai Y F, et al. Site-specific integration and stable expression of exogenous protein at a novel site on CHO cell chromosome. Journal of China Pharmaceutical University, 2021, 52(4): 487-495.
[10] Zhou S T, Ding X F, Yang L, et al. Discovery of a stable expression hot spot in the genome of Chinese hamster ovary cells using lentivirus-based random integration. Biotechnology & Biotechnological Equipment, 2019, 33(1): 605-612.
[11] 周松涛. CHO细胞定点整合稳定表达治疗性蛋白质的研究. 无锡: 江南大学, 2019.
Zhou S T. Study of site-specific integration of therapeutic protein genes into CHO genome and stable expression. Wuxi: Jiangnan University, 2019.
[12] 杨蕾. 在CHO-K1细胞基因组内定点整合表达人血清白蛋白的研究.无锡: 江南大学, 2020.
Yang L. cStudy on site-specific integration and expression of human serum albumin in CHO-K1 ell genome. Wuxi: Jiangnan University, 2020.
[13] 周松涛, 陈蕴, 龚笑海, 等. 利用CRISPR/Cas9技术构建稳定表达人白蛋白基因的中国仓鼠卵巢细胞系. 中国生物工程杂志, 2019, 39(4): 52-59.
Zhou S T, Chen Y, Gong X H, et al. Using CRISPR/Cas9 technology to construct human serum albumin CHO stable expression cell line. China Biotechnology, 2019, 39(4): 52-59.
[14] Stemmer M, Thumberger T, del Sol Keyer M, et al. CCTop: an intuitive, flexible and reliable CRISPR/Cas 9 target prediction tool. PLoS One, 2015, 10(4): e0124633.
doi: 10.1371/journal.pone.0124633
[15] 杨蕾, 丁学峰, 蔡燕飞, 等. CHO细胞Kcmf1基因内定点整合ZsGreen1报告基因的表达稳定性研究. 食品与生物技术学报, 2021, 40(4): 58-66.
Yang L, Ding X F, Cai Y F, et al. Expression stability of ZsGreen1 reporter gene in Kcmf1 gene of CHO cells. Journal of Food Science and Biotechnology, 2021, 40(4): 58-66.
[16] Zhao M L, Wang J X, Luo M Y, et al. Rapid development of stable transgene CHO cell lines by CRISPR/Cas9-mediated site-specific integration into C12orf35. Applied Microbiology and Biotechnology, 2018, 102(14): 6105-6117.
doi: 10.1007/s00253-018-9021-6
[17] Kawabe Y, Komatsu S, Komatsu S, et al. Targeted knock-in of an scFv-Fc antibody gene into the hprt locus of Chinese hamster ovary cells using CRISPR/Cas9 and CRIS-PITCh systems. Journal of Bioscience and Bioengineering, 2018, 125(5): 599-605.
doi: 10.1016/j.jbiosc.2017.12.003
[18] Chi X L, Zheng Q, Jiang R H, et al. A system for site-specific integration of transgenes in mammalian cells. PLoS One, 2019, 14(7): e0219842.
doi: 10.1371/journal.pone.0219842
[19] Carver J, Ng D, Zhou M, et al. Maximizing antibody production in a targeted integration host by optimization of subunit gene dosage and position. Biotechnology Progress, 2020, 36(4): e2967.
[20] Inniss M C, Bandara K, Jusiak B, et al. A novel Bxb 1 integrase RMCE system for high fidelity site-specific integration of mAb expression cassette in CHO Cells. Biotechnology and Bioengineering, 2017, 114(8): 1837-1846.
doi: 10.1002/bit.26268 pmid: 28186334
[1] 林健芬, 罗顺. CHO细胞基因组中稳定hot spot位点研究进展[J]. 中国生物工程杂志, 2022, 42(3): 72-81.
[2] 张毅, 王陈, 石晶晶, 陈学军, 张瑞华, 靳倩, 石童, 李丽琴. 稳定表达人源GABAAR-CHO细胞株的建立[J]. 中国生物工程杂志, 2022, 42(3): 38-46.
[3] 武秀知,王宏杰,祖尧. 斑马鱼hoxa1a基因调控颅面骨骼发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(9): 20-26.
[4] 毕博,张宇,赵慧. 酵母杂交系统在CRISPR/Cas9基因编辑系统脱靶率研究中的应用*[J]. 中国生物工程杂志, 2021, 41(6): 27-37.
[5] 郭洋,陈艳娟,刘怡辰,王海杰,王成稷,王珏,万颖寒,周宇,奚骏,沈如凌. Pd-1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2021, 41(10): 1-11.
[6] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[7] 黄胜, 严启滔, 熊仕琳, 彭弈骐, 赵蕊. 基于CRISPR/Cas9-SAM系统CHD5基因过表达慢病毒载体的构建及对膀胱癌T24细胞增殖,迁移和侵袭能力的影响 *[J]. 中国生物工程杂志, 2020, 40(3): 1-8.
[8] 雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.
[9] 王玥,牟彦双,刘忠华. 基于CRISPR/Cas系统的单碱基编辑技术研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 58-66.
[10] 王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.
[11] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.
[12] 王志敏,毕美玉,贺佳福,任炳旭,刘东军. CRISPR/Cas9系统的发展及其在动物基因编辑中的应用 *[J]. 中国生物工程杂志, 2020, 40(10): 43-50.
[13] 菅璐,黄映辉,梁天亚,王利敏,马洪涛,张婷,李丹阳,王明连. 利用CRISPR/Cas9技术建立敲除JAK2基因K562细胞系 *[J]. 中国生物工程杂志, 2019, 39(7): 39-47.
[14] 周松涛,陈蕴,龚笑海,金坚,李华钟. 利用CRISPR/Cas9技术构建稳定表达人白蛋白基因的中国仓鼠卵巢细胞系 *[J]. 中国生物工程杂志, 2019, 39(4): 52-59.
[15] 万颖寒,慈磊,王珏,龚慧,李俊,董茹,孙瑞林,费俭,沈如凌. PD-L1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2019, 39(12): 42-49.