Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (7): 24-34    DOI: 10.13523/j.cb.2202040
研究报告     
AAV载体介导的蓬佩病模型小鼠体内基因治疗研究*
武志杰1,2,马文豪2,董哲岳2,吴小兵2,**(),杨怡姝1,**(),盛望1
1. 北京工业大学 北京 100124
2. 北京锦篮基因科技有限公司 北京 100176
AAV Vector Mediated Gene Therapy in Pompe Model Mice
Zhi-jie WU1,2,Wen-hao MA2,Zhe-yue DONG2,Xiao-bing WU2,**(),Yi-shu YANG1,**(),Wang SHENG1
1. Beijing University of Technology, Beijing 100124,China
2. Beijing GeneCradle Pharmaceutical Co Ltd, Beijing 100176,China
 全文: PDF(6171 KB)   HTML
摘要: 目的 蓬佩病是一种由酸性α-葡糖苷酶(GAA)缺乏引起的溶酶体糖原贮积症,病理特征是糖原在心脏、骨骼肌和中枢神经系统中累积。基因治疗有望成为治疗蓬佩病的突破性手段。采用AAV9载体在蓬佩病模型小鼠体内介导GAA基因转移,评估转基因干预后小鼠体内GAA酶活力变化、组织糖原累积及病理改变。方法 采用AAV9载体携带密码子优化的GAA基因(coGAA),通过杆状病毒生产工艺包装AAV病毒载体rAAV9-coGAA,分别以1.1×1013 vg/kg、3.0×1013 vg/kg、1.2×1014 vg/kg的剂量静脉单次注射给予成年蓬佩病模型小鼠,以3.0×1013 vg/kg的剂量静脉单次注射给予老龄蓬佩病模型小鼠。到达试验终点后安乐死小鼠,使用荧光分光光度法测定GAA酶活力、PAS染色观察糖原累积、HE染色检查病理变化。结果 成年模型小鼠给药5周后,各个组织能够广泛表达具有活性的GAA,其中心脏、肝脏表达水平较高,脑和脊髓表达水平较低。转基因干预后心肌、骨骼肌与脑中的糖原含量下降,心肌、骨骼肌的空泡样变性显著减少。老龄小鼠治疗后,组织酶活力与模型小鼠相比显著提升,心肌的空泡样变性和炎细胞浸润减少,但骨骼肌的病理改善有限。结论 静脉单次注射rAAV9-coGAA在蓬佩病模型小鼠中能够提升GAA酶活力,减少糖原累积并改善病理,治疗效果呈剂量依赖,对老龄小鼠也有一定治疗效果。为AAV9静脉递送GAA基因治疗蓬佩病的临床应用奠定了基础。
关键词: 蓬佩病酸性α-葡糖苷酶基因治疗AAV9模型小鼠    
Abstract:

Objective: Pompe disease is a lysosomal glycogen storage disease caused by acid α-glucosidase (GAA) deficiency, which is characterized by glycogen accumulation in the heart, skeletal muscle, and central nervous system (CNS). AAV vector-mediated gene therapy is expected to be a breakthrough in the treatment of Pompe disease. In this study, AAV9 vector was used to mediate GAA gene transfer in Pompe disease model mice, and the changes of GAA protease activity, glycogen accumulation in tissues and pathological changes in mice after transgenic intervention were evaluated. Methods: Codon optimized GAA gene (coGAA) was carried by AAV9 vector, and the AAV vector was packaged by baculovirus production process. Adult Pompe model mice were given a single intravenous injection at the dose of 1.1×1013, 3.0×1013, 1.2×1014 vg/kg, and aged Pompe model mice were given a single intravenous injection at the dose of 3.0×1013 vg/kg. After reaching the end point of the experiment, the mice were euthanized, GAA protease activity was determined by fluorescence spectrophotometry, glycogen accumulation was observed by PAS staining, and pathological changes were detected by HE staining. Results: Five weeks after administration, GAA protein was widely expressed in all tissues of adult model mice, with higher expression levels in heart and liver, and lower expression levels in brain and spinal cord. After rAAV9-coGAA treatment, glycogen content in myocardium, skeletal muscle and brain decreased, and vacuolar degeneration in myocardium and skeletal muscle decreased significantly. After treatment, the tissue enzyme activity of the aged animals was significantly increased compared with that of the model mice. The vacuolar degeneration and inflammatory cell infiltration of the myocardium were decreased, but the pathological improvement of skeletal muscle was limited. Conclusion: A single intravenous injection of rAAV9-coGAA can enhance GAA enzyme activity, reduce glycogen accumulation and improve pathology in Pompe model mice. The therapeutic effect was dose-dependent, and the injection also had certain therapeutic effect on aged animals. This study laid a theoretical foundation for the clinical application of AAV9 mediated gene therapy via intravenous route in Pompe disease.

Key words: Pompe disease    Lysosomal acid alpha-glucosidase    Gene therapy    AAV9    Model mice
收稿日期: 2022-02-24 出版日期: 2022-08-03
ZTFLH:  Q819  
基金资助: *北京市自然科学基金(7202002)
通讯作者: 吴小兵,杨怡姝     E-mail: wuxiaobing@bj;yishu-y@bjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
武志杰
马文豪
董哲岳
吴小兵
杨怡姝
盛望

引用本文:

武志杰,马文豪,董哲岳,吴小兵,杨怡姝,盛望. AAV载体介导的蓬佩病模型小鼠体内基因治疗研究*[J]. 中国生物工程杂志, 2022, 42(7): 24-34.

Zhi-jie WU,Wen-hao MA,Zhe-yue DONG,Xiao-bing WU,Yi-shu YANG,Wang SHENG. AAV Vector Mediated Gene Therapy in Pompe Model Mice. China Biotechnology, 2022, 42(7): 24-34.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2202040        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I7/24

图1  rAAV9-coGAA体外表达GAA
图2  rAAV9-coGAA治疗蓬佩病模型小鼠后检测组织GAA酶活力
图3  rAAV9-coGAA治疗成年蓬佩病模型小鼠5周后 GAA免疫荧光
图4  rAAV9-coGAA治疗成年蓬佩病模型小鼠5周后组织糖原染色
图5  rAAV9-coGAA治疗蓬佩病模型小鼠组织HE染色
[1] Kohler L, Puertollano R, Raben N. Pompe disease: from basic science to therapy. Neurotherapeutics, 2018, 15(4): 928-942.
doi: 10.1007/s13311-018-0655-y pmid: 30117059
[2] Taverna S, Cammarata G, Colomba P, et al. Pompe disease: pathogenesis, molecular genetics and diagnosis. Aging, 2020, 12(15): 15856-15874.
doi: 10.18632/aging.103794
[3] 中华医学会儿科学分会内分泌遗传代谢学组, 中华医学会医学遗传学分会, 中华医学会儿科学分会罕见病学组, 等. 儿童糖原累积病Ⅱ型诊断及治疗中国专家共识. 中华儿科杂志, 2021, 59(6): 439-445.
The Subspecialty Group of Endocrinologic, Hereditary and Metabolic Diseases, the Society of Pediatrics, Chinese Medical Association; the Society of Medical Genetics, Chinese Medical Association; the Subspecialty Group of Rare Diseases, the Society of Pediatrics, Chinese Medical Association, et al. Chinese experts consensus on diagnosis and treatment of glycogen storage disease type Ⅱ in children. Chinese Journal of Pediatrics, 2021, 59(6): 439-445.
[4] Colella P, Mingozzi F. Gene therapy for pompe disease: the time is now. Human Gene Therapy, 2019, 30(10): 1245-1262.
doi: 10.1089/hum.2019.109
[5] Kishnani P S, Hwu W L, Mandel H, et al. A retrospective, multinational, multicenter study on the natural history of infantile-onset Pompe disease. The Journal of Pediatrics, 2006, 148(5): 671-676.e2.
doi: 10.1016/j.jpeds.2005.11.033
[6] van Capelle C I, van der Meijden J C, van den Hout J M P, et al. Childhood Pompe disease: clinical spectrum and genotype in 31 patients. Orphanet Journal of Rare Diseases, 2016, 11(1): 65.
doi: 10.1186/s13023-016-0442-y pmid: 27189384
[7] Preisler N, Lukacs Z, Vinge L, et al. Late-onset Pompe disease is prevalent in unclassified limb-girdle muscular dystrophies. Molecular Genetics and Metabolism, 2013, 110(3): 287-289.
doi: 10.1016/j.ymgme.2013.08.005 pmid: 24011652
[8] Falk D J, Soustek M S, Todd A G, et al. Comparative impact of AAV and enzyme replacement therapy on respiratory and cardiac function in adult Pompe mice. Molecular Therapy - Methods & Clinical Development, 2015, 2: 15007.
[9] Costa-Verdera H, Collaud F, Riling C R, et al. Hepatic expression of GAA results in enhanced enzyme bioavailability in mice and non-human Primates. Nature Communications, 2021, 12: 6393.
doi: 10.1038/s41467-021-26744-4 pmid: 34737297
[10] Zincarelli C, Soltys S, Rengo G, et al. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Molecular Therapy, 2008, 16(6): 1073-1080.
doi: 10.1038/mt.2008.76 pmid: 18414476
[11] Yu Z, Zhou S, Luo N, et al. Three-phase partitioning combined with density gradient ultracentrifugation as an economic and universal process for large scale purification of AAV vectors. Molecular Therapy - Methods & Clinical Development, 2019, 17:34-48.
[12] Werling N J, Satkunanathan S, Thorpe R, et al. Systematic comparison and validation of quantitative real-time PCR methods for the quantitation of adeno-associated viral products. Human Gene Therapy Methods, 2015, 26(3): 82-92.
doi: 10.1089/hgtb.2015.013
[13] Raben N, Nagaraju K, Lee E, et al. Targeted disruption of the acid alpha-glucosidase gene in mice causes an illness with critical features of both infantile and adult human glycogen storage disease type II. The Journal of Biological Chemistry, 1998, 273(30): 19086-19092.
doi: 10.1074/jbc.273.30.19086
[14] 马文豪, 章嫣, 董哲岳, 等. 携带CAR启动子的重组AAV9病毒在小鼠体内表达分布特性研究. 病毒学报, 2019, 35(3): 423-430.
Ma W H, Zhang Y, Dong Z Y, et al. Biodistribution of adeno-associated virus 9-mediated gene expression with a CAR promoter in mice. Chinese Journal of Virology, 2019, 35(3): 423-430.
[15] Kishnani P S, Nicolino M, Voit T, et al. Chinese hamster ovary cell-derived recombinant human acid α-glucosidase in infantile-onset Pompe disease. The Journal of Pediatrics, 2006, 149(1): 89-97.
doi: 10.1016/j.jpeds.2006.02.035
[16] Chan J, Desai A K, Kazi Z B, et al. The emerging phenotype of late-onset Pompe disease: a systematic literature review. Molecular Genetics and Metabolism, 2017, 120(3): 163-172.
doi: 10.1016/j.ymgme.2016.12.004
[17] Samulski R J, Muzyczka N. AAV-mediated gene therapy for research and therapeutic purposes. Annual Review of Virology, 2014, 1(1): 427-451.
doi: 10.1146/annurev-virology-031413-085355 pmid: 26958729
[18] Verdera H C, Kuranda K, Mingozzi F. AAV vector immunogenicity in humans: a long journey to successful gene transfer. Molecular Therapy, 2020, 28(3): 723-746.
doi: S1525-0016(20)30003-4 pmid: 31972133
[19] Weber T. Anti-AAV antibodies in AAV gene therapy: current challenges and possible solutions. Frontiers in Immunology, 2021, 12: 658399.
doi: 10.3389/fimmu.2021.658399
[20] Salabarria S M, Nair J, Clement N, et al. Advancements in AAV-mediated gene therapy for pompe disease. Journal of Neuromuscular Diseases, 2020, 7(1): 15-31.
doi: 10.3233/JND-190426 pmid: 31796685
[21] ElMallah M K, Falk D J, Nayak S, et al. Sustained correction of motoneuron histopathology following intramuscular delivery of AAV in pompe mice. Molecular Therapy, 2014, 22(4): 702-712.
doi: 10.1038/mt.2013.282
[22] Falk D J, Mah C S, Soustek M S, et al. Intrapleural administration of AAV9 improves neural and cardiorespiratory function in Pompe disease. Molecular Therapy, 2013, 21(9): 1661-1667.
doi: 10.1038/mt.2013.96
[23] Amalfitano A, Mcvie-Wylie A J, Hu H, et al. Systemic correction of the muscle disorder glycogen storage disease type II after hepatic targeting of a modified adenovirus vector encoding human acid-alpha-glucosidase. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(16): 8861-8866.
[24] Han S O, Ronzitti G, Arnson B, et al. Low-dose liver-targeted gene therapy for pompe disease enhances therapeutic efficacy of ERT via immune tolerance induction. Molecular Therapy - Methods & Clinical Development, 2017, 4: 126-136.
[25] Ronzitti G, Collaud F, Laforet P, et al. Progress and challenges of gene therapy for Pompe disease. Annals of Translational Medicine, 2019, 7(13): 287.
doi: 10.21037/atm.2019.04.67
[1] 赵晓煜,徐祺玲,赵晓东,安云飞. 基因治疗慢病毒载体的转导增强策略*[J]. 中国生物工程杂志, 2021, 41(8): 52-58.
[2] 徐应永. 基因治疗产品的开发现状与挑战[J]. 中国生物工程杂志, 2020, 40(12): 95-103.
[3] 陈庆宇,王鲜忠,张姣姣. 基因技术在治疗2型糖尿病中的应用*[J]. 中国生物工程杂志, 2020, 40(11): 73-81.
[4] 韩亚丽,杨冠恒,陈雁雯,龚秀丽,张敬之. 表达β-珠蛋白基因的安全性慢病毒载体的优化 *[J]. 中国生物工程杂志, 2018, 38(7): 50-57.
[5] 刘怡萱, 边珍, 马红梅. 癌症基因治疗技术进展与展望[J]. 中国生物工程杂志, 2016, 36(5): 106-111.
[6] 陶嫦立, 黄树林. TCR基因免疫治疗中优化转TCR基因配对的研究进展[J]. 中国生物工程杂志, 2016, 36(3): 87-92.
[7] 刘瑞琪, 王玮玮, 吴勇延, 赵秋云, 王勇胜, 卿素珠. CRISPR-Cas9研究进展及在基因治疗上的应用[J]. 中国生物工程杂志, 2016, 36(10): 72-78.
[8] 朱少义, 管丽红, 林俊堂. CRISPR-Cas9系统在疾病模型中的应用[J]. 中国生物工程杂志, 2016, 36(10): 79-85.
[9] 薛金锋, 薛志刚, 陈毅瑶, 李卓, 尹彪, 邬玲仟, 梁德生. 增强型肿瘤特异性启动子介导CDTK治疗肝癌的体内外研究[J]. 中国生物工程杂志, 2015, 35(6): 1-7.
[10] 薛玉文, 李铁军, 周家名, 陈莉. 多靶向RNA干扰技术在基因治疗中的应用与前景[J]. 中国生物工程杂志, 2015, 35(1): 75-81.
[11] 张巧娟, 张艳琼, 柳长柏. 类转录激活样因子效应物核酸酶技术的原理及应用[J]. 中国生物工程杂志, 2014, 34(7): 76-80.
[12] 马步云, 何婉婉, 周立, 王毅刚. 癌症靶向基因-病毒ZD55-XAF1抗肝癌移植瘤的生长及其安全性研究[J]. 中国生物工程杂志, 2014, 34(1): 15-20.
[13] 凡复, 陈建国, 任宏伟. 帕金森病和阿尔茨海默氏病的基因治疗研究进展[J]. 中国生物工程杂志, 2013, 33(4): 129-135.
[14] 刘思也, 夏海滨. 一种新的由CRISPR/Cas系统介导的基因组靶向修饰技术[J]. 中国生物工程杂志, 2013, 33(10): 117-123.
[15] 陈丰, 杨怡姝, 曾毅. 基于RNA的抗HIV-1基因治疗方法研究进展[J]. 中国生物工程杂志, 2012, 32(6): 93-97.