Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (7): 76-80    DOI: 10.13523/j.cb.20140712
综述     
类转录激活样因子效应物核酸酶技术的原理及应用
张巧娟1, 张艳琼1, 柳长柏1,2
1. 三峡大学医学院 宜昌 443002;
2. 三峡大学分子生物学研究所 宜昌 443002
TALEN:A New Genome Site-specific Editing Technology
ZHANG Qiao-Juan1, ZHANG Yan-Qiong1, LIU Chang-Bai1,2
1. Medical School China Three Gorges University, Yichang 443002, China;
2. Institute of Molecule Biology, China Three Gorges University, Yichang 443002, China
 全文: PDF(511 KB)   HTML
摘要:

类转录激活因子效应物核酸酶(transcription activator-like effector nucleases,TALENs)是近年兴起的一种基因定点编辑技术,由特异性DNA结合结构域 TALE和DNA切割结构域Fok I核酸内切酶组成。由于TALEN能对基因组中特异性基因进行识别和定点剪切,导致基因DNA双链断裂,进一步诱导DNA损伤后修复,可对基因组中的特定位点进行高效遗传操作,如基因的敲入、敲除和修复等。TALEN技术以其设计简单、特异性高、毒性低及靶点选择灵活等特点成为目前应用最为广泛的基因定点编辑技术。本文将就TALEN的原理、研究进展以及临床应用展望作一综述。

关键词: 类转录激活因子效应物核酸酶(TALENs)基因定点编辑基因治疗    
Abstract:

Transcription activator-like effectors nucleases (TALENs) has been a novel landmark genetic engineering tool for targeted genome site-specific editing in recent years, which consists of sequence-specific DNA-binding domain TALE and non-specific DNA cleavage domain FokI endonuclease. TALEs recognize and bind to specific DNA sequences and FokI generate a double-strand break (DSB) by its nuclease activity, and then DNA damage repair system induced. TALENs are constructed to mediate high efficient multiple genetic manipulation, through forming DSB, including target genes specific sites of gene segment knock-in, knock-out or correction, etc. TALEN technology with its simple design, high specificity, low toxicity and target selection flexible becomes the most widely used genome site-specific editing technology. Here, we will review the recent progress, clinical application and prospects of TALEN technology.

Key words: TALEN    Site-specific genome editing    Clinical application
收稿日期: 2014-06-03 出版日期: 2014-07-25
ZTFLH:  Q784  
基金资助:

国家自然科学基金资助项目(81070348,81200307)

通讯作者: 柳长柏     E-mail: cbliu@ctgu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张巧娟, 张艳琼, 柳长柏. 类转录激活样因子效应物核酸酶技术的原理及应用[J]. 中国生物工程杂志, 2014, 34(7): 76-80.

ZHANG Qiao-Juan, ZHANG Yan-Qiong, LIU Chang-Bai. TALEN:A New Genome Site-specific Editing Technology. China Biotechnology, 2014, 34(7): 76-80.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140712        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I7/76


[1] Smith J, Grizot S, Arnould S, et al. A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Res, 2006, 34(22): e149-e149.

[2] Menoret S, Fontaniere S, Jantz D, et al. Generation of Ragl-knockout immunodeficient rats and mice using engineered meganucleases. FASEB J, 2013, 27( 2) :703-711.

[3] Kim Y G, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA, 1996, 93(3): 1156-1160

[4] Break through of the year. The runners-up. Science, 2012, 338(6114): 1525-1532

[5] Mussolino C, Cathomen T. RNA guides genome engineering. Nat Biotechnol, 2013, 31(3): 208-209

[6] Hopkins C M, White F F, Choi S H, et al. Identification of a family of avirulence genes from Xanthomonas oryzae pv. oryzae. Mol. Plant-Microbe Interact, 1992, 5(6): 451-459.

[7] Bonas U, Stall R E, Staskawicz B. Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol Gen Genet, 1989, 218(1): 127-136.

[8] Kay S, Hahn S, Marois E, et al. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science, 2007, 318(5850): 648-651.

[9] Boch J, Scholze H, Schornack S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 2009, 326(5959): 1509-1512.

[10] Moscou M J, Bogdanove A J. A simple cipher governs DNA recognition by TAL effectors. Science, 2009, 326(5959): 1501-1501.

[11] Deng D, Yan C, Pan X, et al. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science, 2012, 335(6069): 720-723.

[12] Mak A N S, Bradley P, Cernadas R A, et al. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science, 2012, 335(6069): 716-719.

[13] Chen K, Gao C. TALENs: Customizable molecular DNA scissors for genome engineering of plants. J Genet Genomics, 2013, 40(6): 271-279.

[14] McMahon M A, Rahdar M, Porteus M. Gene editing: not just for translation anymore. Nat Methods, 2011, 9(1):28-31.

[15] Cermak T, Doyle E L, Christian M, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res, 2011, 39(12): e82-e82.

[16] Grau J, Boch J, Posch S. TALENoffer: genome-wide TALEN off-target prediction. Bioinformatics, 2013, 29(22): 2931-2932.

[17] Mahfouz M M, Li L, Shamimuzzaman M, et al. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci USA, 2011, 108(6): 2623-2628.

[18] 沈延,肖安,黄鹏,等.类转录激活因子效应物核酸酶 (TALEN) 介导的基因组定点修饰技术. 遗传, 2013, 35(4): 395-409. Shen Y, Xiao A, Huang P, et al. TALE nuclease engineering and targeted genome modification. HEREDITAS (Beijing), 2013, 35(4):395-409.

[19] Liu J, Gaj T, Patterson J T, et al. Cell-Penetrating Peptide-Mediated Delivery of TALEN Proteins via Bioconjugation for Genome Engineering. PloS one, 2014, 9(1): e85755.

[20] Jia J, Jin Y, Bian T, et al. Bacterial Delivery of TALEN Proteins for Human Genome Editing. PloS one, 2014, 9(3): e91547.

[21] Bichsel C, Neeld D K, Hamazaki T, et al. Bacterial delivery of nuclear proteins into pluripotent and differentiated cells. PloS one, 2011, 6(1): e16465.

[22] Bichsel C, Neeld D, Hamazaki T, et al. Direct Reprogramming of Fibroblasts to Myocytes via Bacterial Injection of MyoD Protein. Cell Reprogram, 2013, 15(2): 117-125.

[23] Sander J D, Cade L, Khayter C, et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat biotechnol, 2011, 29(8): 697-698.

[24] Hockemeyer D, Wang H, Kiani S, et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat biotechnol, 2011, 29(8): 731-734.

[25] Tesson L, Usal C, Ménoret S, et al. Knockout rats generated by embryo microinjection of TALENs. Nat biotechnol, 2011, 29(8): 695-696.

[26] Hockemeyer D, Soldner F, Beard C, et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat biotechnol, 2009, 27(9): 851-857.

[27] Piganeau M, Ghezraoui H, De Cian A, et al. Cancer translocations in human cells induced by zinc finger and TALE nucleases. Genome Res, 2013, 23(7): 1182-1193.

[28] Sun N, Zhao H. Seamless correction of the sickle cell disease mutation of the HBB gene in human induced pluripotent stem cells using TALENs. Biotechnol Bioeng, 2014, 111(5): 1048-1053.

[29] Ma N, Liao B, Zhang H, Wang L, Shan Y, Xue Y, et al. TALEN-mediated gene correction in integration-free beta-thalassemia iPSCs. J Biol Chem, 2013, 288(48): 34671-34679.

[30] Seth A, Stemple D L, Barroso I. The emerging use of zebrafish to model metabolic disease. Dis Model Mech, 2013, 6(5): 1080-1088.

[31] Osborn M J, Starker C G, McElroy A N, et al. TALEN-based gene correction for epidermolysis bullosa. Mol Ther, 2013, 21(6): 1151-1159.

[32] Hu R, Wallace J, Dahlem T J, et al. Targeting human microRNA genes using engineered Tal-effector nucleases (TALENs). PloS one, 2013, 8(5): e63074.

[33] Bacman S R, Williams S L, Pinto M, et al. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat med, 2013, 19(9): 1111-1113.

[34] Manjunath N, Yi G, Dang Y, et al. Newer Gene Editing Technologies toward HIV Gene Therapy. Viruses, 2013, 5(11): 2748-2766.

[35] Moghaddassi S, Eyestone W, Bishop C E. TALEN-mediated modification of the bovine genome for Large-Scale production of Human serum albumin. PloS one, 2014, 9(2): e89631.

[1] 赵晓煜,徐祺玲,赵晓东,安云飞. 基因治疗慢病毒载体的转导增强策略*[J]. 中国生物工程杂志, 2021, 41(8): 52-58.
[2] 徐应永. 基因治疗产品的开发现状与挑战[J]. 中国生物工程杂志, 2020, 40(12): 95-103.
[3] 陈庆宇,王鲜忠,张姣姣. 基因技术在治疗2型糖尿病中的应用*[J]. 中国生物工程杂志, 2020, 40(11): 73-81.
[4] 韩亚丽,杨冠恒,陈雁雯,龚秀丽,张敬之. 表达β-珠蛋白基因的安全性慢病毒载体的优化 *[J]. 中国生物工程杂志, 2018, 38(7): 50-57.
[5] 刘怡萱, 边珍, 马红梅. 癌症基因治疗技术进展与展望[J]. 中国生物工程杂志, 2016, 36(5): 106-111.
[6] 陶嫦立, 黄树林. TCR基因免疫治疗中优化转TCR基因配对的研究进展[J]. 中国生物工程杂志, 2016, 36(3): 87-92.
[7] 刘瑞琪, 王玮玮, 吴勇延, 赵秋云, 王勇胜, 卿素珠. CRISPR-Cas9研究进展及在基因治疗上的应用[J]. 中国生物工程杂志, 2016, 36(10): 72-78.
[8] 朱少义, 管丽红, 林俊堂. CRISPR-Cas9系统在疾病模型中的应用[J]. 中国生物工程杂志, 2016, 36(10): 79-85.
[9] 薛金锋, 薛志刚, 陈毅瑶, 李卓, 尹彪, 邬玲仟, 梁德生. 增强型肿瘤特异性启动子介导CDTK治疗肝癌的体内外研究[J]. 中国生物工程杂志, 2015, 35(6): 1-7.
[10] 薛玉文, 李铁军, 周家名, 陈莉. 多靶向RNA干扰技术在基因治疗中的应用与前景[J]. 中国生物工程杂志, 2015, 35(1): 75-81.
[11] 马步云, 何婉婉, 周立, 王毅刚. 癌症靶向基因-病毒ZD55-XAF1抗肝癌移植瘤的生长及其安全性研究[J]. 中国生物工程杂志, 2014, 34(1): 15-20.
[12] 凡复, 陈建国, 任宏伟. 帕金森病和阿尔茨海默氏病的基因治疗研究进展[J]. 中国生物工程杂志, 2013, 33(4): 129-135.
[13] 刘思也, 夏海滨. 一种新的由CRISPR/Cas系统介导的基因组靶向修饰技术[J]. 中国生物工程杂志, 2013, 33(10): 117-123.
[14] 陈丰, 杨怡姝, 曾毅. 基于RNA的抗HIV-1基因治疗方法研究进展[J]. 中国生物工程杂志, 2012, 32(6): 93-97.
[15] 刁勇, 邱飞, 肖卫东. 重组腺相关病毒包装容量研究进展[J]. 中国生物工程杂志, 2012, 32(01): 97-102.