Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (7): 35-44    DOI: 10.13523/j.cb.2203068
技术与方法     
酵母脂肪酶分子进化及催化合成(S)-1,4-苯并二口恶烷*
张琦**(),唐璐瑶**(),何远志,张凯,祝加伟,崔莉***(),冯雁***()
上海交通大学生命科学技术学院 微生物代谢国家重点实验室 上海 200240
Molecular Evolution of Yeast Lipase for Efficient Synthesis of (S)-1,4-Benzodioxane
Qi ZHANG**(),Lu-yao TANG**(),Yuan-zhi HE,Kai ZHANG,Jia-wei ZHU,Li CUI***(),Yan FENG***()
State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(2921 KB)   HTML
摘要: 目的 1,4-苯并二口恶烷是普罗克生、多沙唑嗪等抗高血压和MCK-242等抗抑郁药物的手性中间体,在医药领域具有广泛应用。目前化学合成具有产量高的优势,然而存在环境污染和生产安全性低等问题。应用脂肪酶进行催化合成提供了1,4-苯并二口恶烷的绿色合成新途径。研究发现天然酶存在对映体选择性低的局限,因此针对南极假丝酵母脂肪酶B进行分子进化,并建立了1,4-苯并二口恶烷催化合成的技术路线。方法 首先,针对南极假丝酵母脂肪酶B活性中心参与底物结合和转化的关键氨基酸残基进行分析,并构建了相互作用位点协同进化的饱和突变库,通过HPLC检测,筛选获得了系列转化效率高和对映选择性强的突变体,最后对影响最佳突变体D223N/A225K催化效率的反应条件进行系统优化。结果 来自D223和A225位点突变体(D223N/A225K和D223G/A225W等)偏向于合成(S)-型产物;而E188和I189位点突变体(E188D/I189M等)表现出偏向于合成(R)-型产物。与野生型相比,最佳突变体D223N/A225K合成(S)-1,4-苯并二口恶烷的ees值从11.9%提升到29.3%。对反应条件系统优化后,突变体D223N/A225K在37℃、正丁醇/磷酸盐缓冲液(20∶80,V/V)两相溶剂中反应50 min后对底物(R,S)-1,4-苯并二口恶烷-2-甲酸甲酯的转化率为(47.5±2.33)%,ees值达(93.9±0.16)%。结论 通过分子改造与条件优化,成功实现对(R,S)-1,4-苯并二口恶烷-2-甲酸甲酯的高效动力学拆分,为蛋白质工程技术创制新酶提供了新例证,也为酶法高效催化合成(S)-1,4-苯并二口恶烷类分子提供了理论和技术基础。
关键词: 南极假丝酵母脂肪酶B蛋白质工程1,4-苯并二口恶烷手性拆分    
Abstract:

Objective: 1,4-Benzodioxane is an important chiral intermediate for antihypertensive (Proroxan and Doxazosin), antidepressant (MCK-242) and other drugs, and it displays a broad spectrum of applications in the pharmaceutical field. Currently, in spite of high-yield advantage of chemical synthesis, there are some problems of environmental pollution and low production safety. Using lipase to catalyze synthesis of 1,4-benzodioxane provides a new pathway of green synthesis of 1,4-benzodioxane. However, natural enzymes face the dilemma of poor enantioselectivity. Therefore, molecular evolution was performed on Candida antarctica lipase B, and a technical route for the catalytic synthesis of 1,4-benzodioxane was established. Methods: Firstly, the key amino acid residues involved in substrate binding and conversion in the active center of Candida antarctica lipase B were analyzed, and saturation mutagenesis libraries on the interaction sites were constructed. Improved mutants with high efficiency and high enantioselectivity were then obtained using HPLC detection. Furthermore, catalytic synthesis conditions of mutant D223N/A225K were systematically optimized. Results: The results indicated that the mutants mainly derived from the pairwise site D223/A225 (such as D223N/A225K and D223G/A225W) were biased towards the synthesis of (S)-isoforms, while most of the mutants derived from the pairwise site E188/I189 (such as E188D/I189M) showed a bias for the synthesis of (R)-isoforms. Compared with WT, the ees value of the best mutant D223N/A225K to synthesize (S)-1,4-benzodioxane was increased from 11.9% to 29.3%. After systematic optimization of the reaction conditions, an ees value of (93.9±0.16)% and a conversion rate of (47.5±2.33)% were achieved using mutant D223N/A225K to catalyze kinetic resolution of methyl (R,S)-2,3-dihydro-1,4-benzodioxin-2-carboxylate in n-butanol/phosphate buffered saline (20∶80, V/V) biphasic solvent at 37℃ for 50 min. Conclusion: An efficient kinetic resolution of methyl (R,S)-2,3-dihydro-1,4-benzodioxin-2-carboxylate was successfully achieved by molecular evolution and optimization of conditions, which provides a new example for the creation of new enzymes by protein engineering technology, and also provides a theoretical and technical foundation for the efficient synthesis of (S)-1,4-benzodioxane molecules by enzymatic methods.

Key words: Candida antarctica lipase B    Protein engineering    1,4-Benzodioxane    Chiral resolution
收稿日期: 2022-03-29 出版日期: 2022-08-03
ZTFLH:  Q819  
基金资助: *国家重点研发计划(2020YFA0907700);中国博士后科学基金(2021M692079)
通讯作者: 张琦,唐璐瑶,崔莉,冯雁     E-mail: cuili@sjtu.edu.cn;yfeng2009@sjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张琦
唐璐瑶
何远志
张凯
祝加伟
崔莉
冯雁

引用本文:

张琦,唐璐瑶,何远志,张凯,祝加伟,崔莉,冯雁. 酵母脂肪酶分子进化及催化合成(S)-1,4-苯并二口恶烷*[J]. 中国生物工程杂志, 2022, 42(7): 35-44.

Qi ZHANG,Lu-yao TANG,Yuan-zhi HE,Kai ZHANG,Jia-wei ZHU,Li CUI,Yan FENG. Molecular Evolution of Yeast Lipase for Efficient Synthesis of (S)-1,4-Benzodioxane. China Biotechnology, 2022, 42(7): 35-44.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2203068        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I7/35

图1  CalB突变位点的选择
图2  CalB野生型及突变体的异源表达与纯化
图3  野生型与突变体催化(R,S)-1,4-苯并二口恶烷-2-甲酸甲酯动力学拆分
图4  温度对野生型和突变体催化反应的影响
图5  共溶剂种类对野生型和突变体催化反应的影响
图6  共溶剂百分比对野生型和突变体催化反应的影响
图7  野生型和突变体催化反应的时间进程
[1] Bolchi C, Bavo F, Appiani R, et al. 1, 4-Benzodioxane, an evergreen, versatile scaffold in medicinal chemistry: a review of its recent applications in drug design. European Journal of Medicinal Chemistry, 2020, 200: 112419.
doi: 10.1016/j.ejmech.2020.112419
[2] Pilkington L I, Barker D. Synthesis and biology of 1, 4-benzodioxane lignan natural products. Natural Product Reports, 2015, 32(10): 1369-1388.
doi: 10.1039/c5np00048c pmid: 26150088
[3] Avagyan A S, Vardanyan S O, Sargsyan A B, et al. Synthesis and antibacterial activity of new oxadiazolylbenzodioxane derivatives. Russian Journal of Organic Chemistry, 2020, 56(3): 385-389.
doi: 10.1134/S1070428020030033
[4] Nelson W L, Wennerstrom J E, Dyer D C, et al. Absolute configuration of glycerol derivatives. 4. synthesis and pharmacological activity of chiral 2-alkylaminomethylbenzodioxans, competitive α-adrenergic antagonists. Journal of Medicinal Chemistry, 1977, 20(7): 880-885.
pmid: 17749
[5] Campbell S F, Hardstone J D, Palmer M J. 2, 4-Diamino-6, 7-dimethoxyquinoline derivatives as alpha 1-adrenoceptor antagonists and antihypertensive agents. Journal of Medicinal Chemistry, 1988, 31(5): 1031-1035.
pmid: 2896245
[6] Ma S P, Ren L M, Zhao D, et al. Chiral selective effects of doxazosin enantiomers on blood pressure and urinary bladder pressure in anesthetized rats. Acta Pharmacologica Sinica, 2006, 27(11): 1423-1430.
doi: 10.1111/j.1745-7254.2006.00443.x
[7] Niu C Q, Zhao D, Jia X M, et al. α1-Adrenoceptor antagonist profile of doxazosin and its enantiomers in isolated rabbit blood vessels. Chinese Journal of Pharmacology and Toxicology, 2003, 17(5): 354-359.
[8] Patel S D, Habeski W M, Min H, et al. Identification and SAR around N-{2-[4-(2, 3-dihydro-benzo[1, 4]dioxin-2-ylmethyl)-[1, 4]diazepan-1-yl]-ethyl}-2-phenoxy-nicotinamide, a selective α2C adrenergic receptor antagonist. Bioorganic & Medicinal Chemistry Letters, 2008, 18(20): 5689-5693.
doi: 10.1016/j.bmcl.2008.08.055
[9] Turner N J. Enzyme catalysed deracemisation and dynamic kinetic resolution reactions. Current Opinion in Chemical Biology, 2004, 8(2): 114-119.
doi: 10.1016/j.cbpa.2004.02.001
[10] Alkadi H, Jbeily R. Role of chirality in drugs: an overview. Infectious Disorders Drug Targets, 2018, 18(2): 88-95.
doi: 10.2174/1871526517666170329123845
[11] Chen F X, Bai Q X, Wang Q F, et al. Stereoselective pharmacokinetics and chiral inversions of some chiral hydroxy group drugs. Current Pharmaceutical Biotechnology, 2020, 21(15): 1632-1644.
doi: 10.2174/1389201021666200727144053
[12] Rouf A, Gupta P, Aga M A, et al. Chemoenzymatic synthesis of piperoxan, prosympal, dibozane, and doxazosin. Tetrahedron: Asymmetry, 2012, 23(22-23): 1615-1623.
doi: 10.1016/j.tetasy.2012.10.018
[13] Varma R, Kasture S M, Nene S, et al. Lipases catalyzed enantioselective hydrolysis of (R, S)-methyl 1, 4-benzodioxan-2-carboxylate intermediate for (S)-doxazosin mesylate. World Journal of Microbiology and Biotechnology, 2008, 24(4): 577-579.
doi: 10.1007/s11274-007-9504-6
[14] Sikora A, Tarczykowska A, Chałupka J, et al. Kinetic resolution of a b-adrenolytic drug with the use of lipases as enantioselective biocatalysts. Medical Research Journal, 2018, 3(1): 38-42.
doi: 10.5603/MRJ.2018.0007
[15] Wu J, Wang H J, Yang B, et al. Efficient production of (R)-3-TBDMSO glutaric acid methyl monoester by manipulating the substrate pocket of Pseudozyma antarctica lipase B. RSC Advances, 2017, 7(61): 38264-38272.
doi: 10.1039/C7RA06016E
[16] Yang B, Wang H J, Song W, et al. Engineering of the conformational dynamics of lipase to increase enantioselectivity. ACS Catalysis, 2017, 7(11): 7593-7599.
doi: 10.1021/acscatal.7b02404
[17] Marton Z, Léonard-Nevers V, Syrén P O, et al. Mutations in the stereospecificity pocket and at the entrance of the active site of Candida antarctica lipase B enhancing enzyme enantioselectivity. Journal of Molecular Catalysis B: Enzymatic, 2010, 65(1-4): 11-17.
doi: 10.1016/j.molcatb.2010.01.007
[18] Shen J W, Qi J M, Zhang X J, et al. Significantly increased catalytic activity of Candida antarctica lipase B for the resolution of cis-(±)-dimethyl 1-acetylpiperidine-2, 3-dicarboxylate. Catalysis Science & Technology, 2018, 8(18): 4718-4725.
[19] Wu Z Y, Liu H, Xu L S, et al. Algorithm-based coevolution network identification reveals key functional residues of the α/β hydrolase subfamilies. The FASEB Journal, 2020, 34(2): 1983-1995.
doi: 10.1096/fj.201900948RR
[20] Świderek K, Moliner V. Computational studies of Candida antarctica lipase B to test its capability as a starting point to redesign new diels-alderases. The Journal of Physical Chemistry B, 2016, 120(8): 2053-2070.
doi: 10.1021/acs.jpcb.5b10527
[21] 武志贇. 脂肪酶分子共进化及催化手性药物中间体合成的研究. 上海: 上海交通大学, 2020.
Wu Z Y. Lipase coevolution and its catalytic synthesis of chiral drug intermediates. Shanghai: Shanghai Jiao Tong University, 2020.
[22] Bartsch S, Kourist R, Bornscheuer U. Complete inversion of enantioselectivity towards acetylated tertiary alcohols by a double mutant of a Bacillus subtilis esterase. Angewandte Chemie International Edition, 2008, 47(8): 1508-1511.
[23] Kille S, Acevedo-Rocha C G, Parra L P, et al. Reducing codon redundancy and screening effort of combinatorial protein libraries created by saturation mutagenesis. ACS Synthetic Biology, 2013, 2(2): 83-92.
doi: 10.1021/sb300037w
[24] Alejaldre L, Pelletier J N, Quaglia D. Methods for enzyme library creation: which one will You choose? BioEssays, 2021, 43(8): 2100052.
doi: 10.1002/bies.202100052
[1] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.
[2] 李炳娟,刘金锭,廖谊芳,韩文英,刘珂,侯晨露,张磊. 老黄酶OYE家族的蛋白质工程的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 163-169.
[3] 公颜慧, 马三梅, 张云, 王永飞, 胡云峰. 新颖微生物低温酯酶EstP8的酶学性质研究与在手性催化中的应用[J]. 中国生物工程杂志, 2016, 36(10): 35-44.
[4] 林瑞凤 舒正玉 薛龙吟 蔡少丽 黄建忠. 微生物脂肪酶蛋白质工程[J]. 中国生物工程杂志, 2009, 29(09): 0-0.
[5] 张秀艳,何国庆. 蛋白质突变体基因库构建方法的研究进展[J]. 中国生物工程杂志, 2006, 26(10): 50-56.
[6] 谢晚彬, 谢和芳. 蛋白质定向进化的研究技术及应用[J]. 中国生物工程杂志, 2005, 25(S1): 16-18.
[7] 朱俊晨, 王小菁. 酶的分子设计、改造与工程应用[J]. 中国生物工程杂志, 2004, 24(8): 32-37.
[8] 解复红, 李文鹏, 张克勤. 耐碱和耐热木聚糖酶研究进展[J]. 中国生物工程杂志, 2003, 23(7): 72-75.
[9] 邢自力, 陈华友, 谢芳, 吴自荣. 植酸酶及其热稳定性研究进展[J]. 中国生物工程杂志, 2003, 23(5): 31-35.
[10] 魏令波, 费云标, PaulXLiu. 蛋白内含子与蛋白剪接[J]. 中国生物工程杂志, 2002, 22(4): 12-16.
[11] 焦建伟, 茹炳根. 溶栓剂研究的新进展[J]. 中国生物工程杂志, 2002, 22(1): 30-32,29.
[12] 陈莉, 金由辛, 王德宝. tRNA介导蛋白质工程[J]. 中国生物工程杂志, 2001, 21(1): 11-14.
[13] 董晓明, 刘明河, 朱圣庚. 新型溶栓剂葡萄球菌激酶的研究进展[J]. 中国生物工程杂志, 2000, 20(6): 5-8.
[14] 朱国萍, 滕脉坤, 王玉珍. 脯氨酸对蛋白质热稳定性的贡献[J]. 中国生物工程杂志, 2000, 20(4): 48-51.
[15] 王凡强, 马美荣, 王正祥, 诸葛健. 枯草杆菌蛋白酶基因工程的研究进展[J]. 中国生物工程杂志, 2000, 20(2): 41-44.