Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (3): 163-169    DOI: 10.13523/j.cb.1905041
综述     
老黄酶OYE家族的蛋白质工程的研究进展 *
李炳娟(),刘金锭,廖谊芳,韩文英,刘珂,侯晨露,张磊
天津商业大学生物技术与食品科学学院 天津市食品生物技术重点实验室 天津 300134
Advances in Protein Engineering of the Old Yellow Enzyme OYE Family
LI Bing-juan(),LIU Jin-ding,LIAO Yi-fang,HAN Wen-ying,LIU Ke,HOU Chen-lu,ZHANG Lei
Department of Biotechnology and Food Science, Tianjin University of Commerce,Tianjin Key Laboratory of Food and Biotechnology, Tianjin 300134, China
 全文: PDF(1219 KB)   HTML
摘要:

老黄酶OYE家族酶是一类广泛分布的能够催化烯烃化合物不对称还原的酶类,其能够用于多种手性化合物的制备.分析了OYE家族酶的系统分类及催化反应类型,针对目前该类酶在应用过程中出现的稳定性差,活性低及底物特异性强等问题,综述了蛋白质工程方法对该类酶进行改造的研究进展,为深入研究该家族酶的催化机制及进一步改造提供参考,同时为进一步拓展OYE酶的工业化应用奠定基础.

关键词: OYE家族酶蛋白质工程理性设计不对称还原    
Abstract:

The old yellow enzyme family (OYEs) is a large family which widely distributed and capable of catalyzing the asymmetric reduction of olefin compounds. It can be used in the preparation of various chiral compounds. The system classification and catalytic reaction types of OYEs were analyzed. Meanwhile, protein engineering methods on the modification of the stability, activity and switching the substrate specificity of OYEs are also discussed. Some clues for further study the catalytic mechanism of OYEs and lays the foundation for further expanding the industrial application of OYEs were given.

Key words: Old yellow enzyme family (OYEs)    Protein engineering    Rational design    Asymmetric reduction
收稿日期: 2019-05-23 出版日期: 2020-04-18
ZTFLH:  Q816  
基金资助: * 国家自然科学基金青年基金(31801471,31701172);天津市自然科学基金青年基金(18JCQNJC78900,18JCQNJC09900)
通讯作者: 李炳娟     E-mail: libingjuan2010@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李炳娟
刘金锭
廖谊芳
韩文英
刘珂
侯晨露
张磊

引用本文:

李炳娟,刘金锭,廖谊芳,韩文英,刘珂,侯晨露,张磊. 老黄酶OYE家族的蛋白质工程的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 163-169.

LI Bing-juan,LIU Jin-ding,LIAO Yi-fang,HAN Wen-ying,LIU Ke,HOU Chen-lu,ZHANG Lei. Advances in Protein Engineering of the Old Yellow Enzyme OYE Family. China Biotechnology, 2020, 40(3): 163-169.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.1905041        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I3/163

图1  OYE酶催化反应示意图
图2  OYE家族酶的系统分类[4]
  
图3  OYE酶活性的快速检测方法[19]
酶名称 来源 改造目的 改造结果 参考文献
PETN E. nterobacter cloacae PB2 提高酶催化活性 W102→F/I,酶催化速率提高5~6倍 [20]
YqjM B. subtilis C26D/I69T对R-构型产物的转化效率提高了130倍 [21]
NCR Zymomonas mobilis 提高酶的稳定性 第4个loop区截短4个氨基酸,显著改善酶的热稳定性及有机溶剂耐受性 [22]
TsER Thermus thermophilus HB8 改变酶的底物/
产物特异性
C25G/I67T(RS)或C25D/I67T(SR)催化产生的产物发生了产物构型的反转 [23]
OYE1 Saccharomyces carlsbergensis F296S/W116A催化产物构型发生反转(RS) [24]
MR Pseudomonas putida E134R/L146R突变体对辅酶NADH的亲和力提高了15倍,且与野生型酶相比,突变体也能利用辅酶NADPH作为供氢体 [25]
NCR Zymomonas mobilis 产生新的催化特性 W100I产生了新的催化特性[催化甲基-2-(羟甲基)丙烯酸酯产生S-构型的产物] [23]
表2  OYE家族酶的理性设计
图4  OYE家族酶的序列比对结果
[1] Fox K M, Karplus P A . Old yellow enzyme at 2 A resolution: overall structure, ligand binding, and comparison with related flavoproteins. Structure, 1994,2(11):1089-1105.
[2] Stuermer R, Hauer B, Hall M , et al. Asymmetric bioreduction of activated C=C bonds using enoate reductases from the old yellow enzyme family. Curr Opin Chem Biol, 2007,11(2):203-213.
[3] Toogood H S, Scrutton N S . Discovery, characterization, engineering, and applications of ene-reductases for industrial biocatalysis. ACS Catalysis, 2018,8(4):3532-3549.
[4] Scholtissek A, Tischler D, Westphal A H , et al. Old yellow enzyme-catalysed asymmetric hydrogenation: linking family roots with improved catalysis. Catalysts, 2017,7(5):130.
[5] Breithaupt C, Strassner J, Breitinger U , et al. X-ray structure of 12-oxophytodienoate reductase 1 provides structural insight into substrate binding and specificity within the family of OYE. Structure, 2001,9(5):419-429.
[6] Padhi S K, Bougioukou D J, Stewart J D . Site-saturation mutagenesis of tryptophan 116 of Saccharomyces pastorianus old yellow enzyme uncovers stereocomplementary variants. J Am Chem Soc, 2009,131(9):3271-3280.
[7] Wada M, Yoshizumi A, Noda Y , et al. Production of a doubly chiral compound,(4R, 6R)-4-hydroxy-2, 2, 6-trimethylcyclohexanone, by two-step enzymatic asymmetric reduction. Appl Environ Microbiol, 2003,69(2):933-937.
[8] Burda E, Reβ T, Winkler T , et al. Highly enantioselective reduction of α‐methylated nitroalkenes. Angewandte Chemie International Edition, 2013,52(35):9323-9326.
[9] Brenna E, Gatti F G, Manfredi A , et al. Steric Effects on the Stereochemistry of old yellow enzyme‐mediated reductions of unsaturated diesters: flipping of the substrate within the enzyme active site induced by structural modifications. Advanced Synthesis & Catalysis, 2012,354(14‐15):2859-2864.
[10] Stueckler C, Mueller N J, Winkler C K , et al. Bioreduction of α-methylcinnamaldehyde derivatives: chemo-enzymatic asymmetric synthesis of Lilial TM and Helional TM . Dalton transactions, 2010,39(36):8472-8476.
[11] Knaus T, Mutti F G, Humphreys L D , et al. Systematic methodology for the development of biocatalytic hydrogen-borrowing cascades: application to the synthesis of chiral α-substituted carboxylic acids from α-substituted α, β-unsaturated aldehydes. Organic & Biomolecular Chemistry, 2015,13(1):223-233.
[12] Winkler C K, Clay D, Davies S , et al. Chemoenzymatic asymmetric synthesis of pregabalin precursors via asymmetric bioreduction of β-cyanoacrylate esters using ene-reductases. The Journal of Organic Chemistry, 2013,78(4):1525-1533.
[13] Müller A, Stürmer R, Hauer B , et al. Stereospecific alkyne reduction: novel activity of old yellow enzymes. Angewandte Chemie International Edition, 2007,46(18):3316-3318.
[14] Cirino P C, Mayer K M, Umeno D. Generating mutant libraries using error-prone PCR. Directed evolution library creation. Totowa: Press, 2003: 3-9.
[15] Stemmer W P . Rapid evolution of a protein in vitro by DNA shuffling. Nature, 1994,370(6488):389.
[16] Daugherty A B, Govindarajan S, Lutz S . Improved biocatalysts from a synthetic circular permutation library of the flavin-dependent oxidoreductase old yellow enzyme. J Am Chem Soc, 2013,135(38):14425-14432.
[17] Shimizu Y, Kuruma Y, Ying B W , et al. Cell-free translation systems for protein engineering. FEBS J, 2006,273(18):4133-4140.
[18] Quertinmont L T, Lutz S . Cell-free protein engineering of old yellow enzyme 1 from Saccharomyces pastorianus. Tetrahedron, 2016,72(46):7282-7287.
[19] Forchin M C, Crotti M, Gatti F G , et al. A rapid and high-throughput assay for the estimation of conversions of ene-reductase-catalysed reactions. Chembiochem, 2015,16(11):1571-1573.
[20] Hulley M E, Toogood H S, Fryszkowska A , et al. Focused directed evolution of pentaerythritol tetranitrate reductase by using automated anaerobic kinetic screening of site-saturated libraries. Chembiochem, 2010,11(17):2433-2447.
[21] Bougioukou D J, Kille S, Taglieber A , et al. Directed evolution of an enantioselective enoate‐reductase: testing the utility of iterative saturation mutagenesis. Advanced Synthesis & Catalysis, 2009,351(18):3287-3305.
[22] Reich S, Kress N, Nestl B M , et al. Variations in the stability of NCR ene reductase by rational enzyme loop modulation. J Struct Biol, 2014,185(2):228-233.
[23] Nett N, Duewel S, Richter A A , et al. Revealing additional stereocomplementary pairs of old yellow enzymes by rational transfer of engineered residues. Chem Bio Chem, 2017,18(7):685-691.
[24] Crotti M, Parmeggiani F, Ferrandi E E , et al. Stereoselectivity switch in the reduction of α-Alkyl-β-arylenones by structure-guided designed variants of the ene reductase OYE1. Frontiers in Bioengineering and Biotechnology, 2019,7:89.
[25] Iorgu A I, Hedison T M, Hay S , et al. Selectivity through discriminatory induced fit enables switching of NAD (P) H coenzyme specificity in old yellow enzyme ene‐reductases. The FEBS Journal, 2019,286:3117-3128.
[26] Li B J, Wang H, Gong T , et al. Improving 10-deacetylbaccatin III-10-β-O-acetyltransferase catalytic fitness for taxol production. Nature Communications, 2017,8(1):15544.
[27] Reetz M T, Carballeira J D . Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat Protoc, 2007,2(4):891-903.
[28] Reetz M T, Bocola M, Carballeira J D , et al. Expanding the range of substrate acceptance of enzymes: combinatorial active-site saturation test. Angew Chem Int Ed Engl, 2005,44(27):4192-4196.
[29] Scholtissek A, G?dke E, Paul C E , et al. Catalytic performance of a class III old yellow enzyme and its cysteine variants. Frontiers in Microbiology, 2018,9:2410.
[30] Brenna E, Crotti M, Gatti F G , et al. Opposite enantioselectivity in the bioreduction of (Z)-beta-Aryl-beta-cyanoacrylates mediated by the tryptophan 116 mutants of old yellow enzyme 1: synthetic approach to (R)- and (S)-beta-Aryl-gamma-lactams. Advanced Synthesis & Catalysis, 2015,357(8):1849-1860.
[1] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.
[2] 魏子翔,张柳群,雷磊,韩正刚,杨江科. 疏棉状嗜热丝孢菌(Thermomyces lanuginosus)脂肪酶的理性设计提高其活性和温度稳定性[J]. 中国生物工程杂志, 2021, 41(2/3): 63-69.
[3] 苏永君,胡蝶,胡博淳,李闯,文正,章晨,邬敏辰. 定点突变提高环氧化物水解酶AuEH2催化对甲基苯基缩水甘油醚的对映选择性*[J]. 中国生物工程杂志, 2020, 40(3): 88-95.
[4] 唐存多,史红玲,焦铸锦,刘飞,许建和,阚云超,姚伦广. CPC乙酰化酶底物结合区域Loop上脯氨酸对其催化特性的影响*[J]. 中国生物工程杂志, 2017, 37(12): 34-39.
[5] 虞晓丹, 吴秀秀, 姚冬生, 刘大岭, 谢春芳. 基于分子结构评价的Bacillus subtilis β-1,4-内切木聚糖酶胰蛋白酶抗性的理性设计[J]. 中国生物工程杂志, 2016, 36(8): 80-88.
[6] 郭超, 王志彦, 甘一如, 李丹, 邓勇, 于浩然, 黄鹤. 技术与方法理性设计改造牛肠激酶的热稳定性[J]. 中国生物工程杂志, 2016, 36(8): 46-54.
[7] 马晨露, 唐存多, 史红玲, 王瑞, 岳超, 夏敏, 邬敏辰, 阚云超. 头孢菌素C乙酰化酶的半理性改造及7-ACA的生物合成[J]. 中国生物工程杂志, 2015, 35(12): 65-71.
[8] 唐存多, 史红玲, 唐青海, 焦铸锦, 阚云超, 邬敏辰, 李剑芳. 生物催化剂发现与改造的研究进展[J]. 中国生物工程杂志, 2014, 34(9): 113-121.
[9] 熊龙斌, 曾虹燕, 何平, 谭奕哲, 刘学英, 张存滢, 蔡西玲. 高分子膜载体固定化酵母催化2-辛酮不对称还原[J]. 中国生物工程杂志, 2013, 33(2): 47-53.
[10] 林瑞凤 舒正玉 薛龙吟 蔡少丽 黄建忠. 微生物脂肪酶蛋白质工程[J]. 中国生物工程杂志, 2009, 29(09): 0-0.
[11] 张秀艳,何国庆. 蛋白质突变体基因库构建方法的研究进展[J]. 中国生物工程杂志, 2006, 26(10): 50-56.
[12] 谢晚彬, 谢和芳. 蛋白质定向进化的研究技术及应用[J]. 中国生物工程杂志, 2005, 25(S1): 16-18.
[13] 朱俊晨, 王小菁. 酶的分子设计、改造与工程应用[J]. 中国生物工程杂志, 2004, 24(8): 32-37.
[14] 解复红, 李文鹏, 张克勤. 耐碱和耐热木聚糖酶研究进展[J]. 中国生物工程杂志, 2003, 23(7): 72-75.
[15] 邢自力, 陈华友, 谢芳, 吴自荣. 植酸酶及其热稳定性研究进展[J]. 中国生物工程杂志, 2003, 23(5): 31-35.