Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (5): 58-68    DOI: 10.13523/j.cb.2201011
技术与方法     
构建可合成非天然辅酶的圆红冬孢酵母工程菌*
梁世玉1,2,万里1,2,郭潇佳1,王雪颖1,吕力婷1,胡英菡1,2,赵宗保1,**()
1 中国科学院大连化学物理研究所 大连 116023
2 中国科学院大学 北京 100049
Engineered Rhodosporidium toruloides Strains Capable of Biosynthesizing a Non-natural Cofactor
LIANG Shi-yu1,2,WAN Li1,2,GUO Xiao-jia1,WANG Xue-ying1,LV Li-ting1,HU Ying-han1,2,ZHAO Zong-bao1,**()
1 Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(2634 KB)   HTML
摘要:

烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD)及其还原态是生物体通用的氧化还原辅酶和重要小分子,参与胞内众多代谢反应,因此调控NAD水平不仅难以选择性作用于代谢途径,还常常产生意外的生物学效应。最近研究发现利用非天然辅酶烟酰胺胞嘧啶二核苷酸(nicotinamide cytosine dinucleotide,NCD),可构建正交的氧化还原催化体系,为调控胞内代谢提供了新机遇。为实现在产油酵母圆红冬孢酵母中建立NCD介导的氧化还原代谢,采用农杆菌介导转化方法,在基因组整合表达密码子优化的NCD合酶(NcdS)编码基因NCDS,获得系列有效表达NcdS的工程菌株。酶偶联法分析发现,工程菌细胞裂解液NcdS酶活达8.1×10-3 U/OD600 nm。通过高效液相色谱法(HPLC)和超高分辨率质谱检测,确定细胞裂解液可催化合成NCD。在培养基内补加5.0 mmol/L烟酰胺核糖后,工程菌胞内合成NCD达41.6 μmol/L。对工程菌进行发酵和油脂提取,发现胞内表达NCD合酶未导致细胞产油性能降低,后续可通过表达其他NCD偏好性酶,有望在圆红冬孢酵母中建立受NCD调控的油脂合成代谢体系。

关键词: 圆红冬孢酵母非天然辅酶烟酰胺胞嘧啶二核苷酸合成生物学氧化还原代谢    
Abstract:

Nicotinamide adenine dinucleotide (NAD) and its reduced form are universal redox cofactors involved in many cellular reactions. Cellular NAD level disturbance routinely leads to unexpected biological effects, and thus it is difficult to regulate a redox pathway-of-interest by manipulating NAD level. Recently, a non-natural cofactor nicotinamide cytosine dinucleotide (NCD) was devised and orthogonal redox systems based on NCD were developed, providing a new strategy for regulating cellular metabolism. To achieve more efficient regulation of lipid metabolism of the oleaginous yeast Rhodosporidium toruloides, a codon-optimized gene NCDS encoding NCD synthetase (NcdS) was integrated into the genome of R. toruloides by an Agrobacterium-mediated transformation method. Engineered strains were found with proper expression of NcdS and enzyme activity of the cell lysates reached 8.1×10-3 U/OD600 nm based on a coupled colorimetric assay. Successful biosynthesis of NCD by the cell lysates was further verified by high-performance liquid chromatography and ultra-high-resolution mass spectrometry. Intracellular NCD levels up to 41.6 μmol/L were realized upon feeding 5.0 mmol/L of nicotinamide riboside to the media used for cell culture. Results also showed that the expression of NcdS had little detrimental effect on lipid production capacity. It is expected that lipid metabolism may be reconstructed and regulated by NCD upon further expression of other NCD-preferred enzymes in R. toruloides.

Key words: Rhodosporidium toruloides    Non-natural cofactor    Nicotinamide cytosine dinucleotide(NCD)    Synthetic biology    Redox metabolism
收稿日期: 2022-01-10 出版日期: 2022-06-17
ZTFLH:  Q819  
基金资助: *国家重点研发计划(2021YFA0910600)
通讯作者: 赵宗保     E-mail: zhaozb@dicp.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
梁世玉
万里
郭潇佳
王雪颖
吕力婷
胡英菡
赵宗保

引用本文:

梁世玉,万里,郭潇佳,王雪颖,吕力婷,胡英菡,赵宗保. 构建可合成非天然辅酶的圆红冬孢酵母工程菌*[J]. 中国生物工程杂志, 2022, 42(5): 58-68.

LIANG Shi-yu,WAN Li,GUO Xiao-jia,WANG Xue-ying,LV Li-ting,HU Ying-han,ZHAO Zong-bao. Engineered Rhodosporidium toruloides Strains Capable of Biosynthesizing a Non-natural Cofactor. China Biotechnology, 2022, 42(5): 58-68.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2201011        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I5/58

图1  NCD合成酶催化的反应
菌株/质粒 信息 来源或文献
菌株
Escherichia coli DH10B F-, endA1, recA1, galU, galK, deoR, nupG, rpsL, ΔlacX74 Φ80lacZΔM15, araD139, Δ(ara,leu)7697, mcrA, λ-, Δ(mrr-hsdRMS-mcrBC) Invitrogen
Agrobacterium tumefaciens AGL1 AGL0 recAbla pTiBo542ΔT Mop+ CbR [27]
Rhodosporidium toruloides NP11 MAT A1 [25]
DH10B-NCDS DH10B/PZPK-PPGK-NCDS-P2A-HYG-Thsp This study
AGL1-NCDS AGL1/PZPK-PPGK-NCDS-P2A-HYG-Thsp This study
NP11-NCDS1~5 NP11/PPGK-NCDS-P2A-HYG-Thsp1~5 This study
质粒
PZPK KanR [28]
pUC-kan-NcdS-2 KanR [12]
PZPK-PPGK-MNP-P2A-HYG-Thsp KanR [29]
pUC57-NCDS KanR This study
PZPK-PPGK-NCDS-P2A-HYG-Thsp PPGK-NCDS-P2A-HYG-Thsp in PZPK This study
表1  本文所用菌株和质粒
引物 序列(5' →3')
PGK-NCDS-F GCAGGTTCACAGCAACTCACCCGTCCAACTCCCACCCTCCCCCGTGCAGCCCACCATGAAGTCGCTCCAGGCTCTCTTC
NCDS(his)-P2A-R
CAGGGTTCTCTTCGACGTCGCCAGCCTGCTTGAGGAGCGAGAAGTTGGTAGCGCCCGAGCCGTGGTGATGATGGTGG
TGGCGGTAG
PGK-F CGCATCGTTGAACTTGCACTTC
HYG-R CGAGACCGAGTCGAACTTTTCGATG
NCDS-NF GCCCACCATGAAGTCGCTC
NCDS-NR GGTAGAGGCCCTGCTGGTTG
GAPDH-F GGTATCGCCCTCAACGACA
GAPDH-R GACGAGCAAGTCCACGACAC
表2  本文所用引物
图2  转化子菌落PCR鉴定
图3  工程菌NcdS蛋白表达验证
图4  粗酶活测定原理与结果
图5  粗酶液体外催化合成NCD
图6  工程菌胞内NCD测定
Strains Dry cell weight /(g/L) Total lipid /(g/L) Lipid content /% Lipid yield /(g/g sugar)
NP11-NCDS1 12.4 ± 0.4 5.7 ± 0.3* 45.7 ± 2.2* 0.119 ± 0.007
NP11-NCDS2 11.7 ± 0.2 5.3 ± 0.2 45.6 ± 1.8* 0.113 ± 0.005
NP11-NCDS3 8.8 ± 0.2** 3.2 ± 0.2* 36.5 ± 1.6* 0.078 ± 0.003*
NP11-NCDS4 12.0 ± 0.3 5.3 ± 0.3 44.3 ± 1.6 0.113 ± 0.005
NP11-NCDS5 12.4 ± 0.5 5.7 ± 0.3* 46.2 ± 0.4* 0.121 ± 0.005
NP11 11.8 ± 0.1 5.0 ± 0.1 42.0 ± 1.3 0.106 ± 0.001
表3  菌株油脂生产数据
[1] Wang M, Chen B Q, Fang Y M, et al. Cofactor engineering for more efficient production of chemicals and biofuels. Biotechnology Advances, 2017, 35(8): 1032-1039.
doi: 10.1016/j.biotechadv.2017.09.008
[2] Amjad S, Nisar S, Bhat A A, et al. Role of NAD+ in regulating cellular and metabolic signaling pathways. Molecular Metabolism, 2021, 49: 101195.
doi: 10.1016/j.molmet.2021.101195
[3] Xiao W S, Wang R S, Handy D E, et al. NAD(H) and NADP(H) redox couples and cellular energy metabolism. Antioxidants & Redox Signaling, 2018, 28(3): 251-272.
[4] Martins-Santana L, Nora L C, Sanches-Medeiros A, et al. Systems and synthetic biology approaches to engineer fungi for fine chemical production. Frontiers in Bioengineering and Biotechnology, 2018, 6: 117.
doi: 10.3389/fbioe.2018.00117 pmid: 30338257
[5] Xu X H, Liu Y F, Du G C, et al. Microbial chassis development for natural product biosynthesis. Trends in Biotechnology, 2020, 38(7): 779-796.
doi: 10.1016/j.tibtech.2020.01.002
[6] Li C, Swofford C A, Sinskey A J. Modular engineering for microbial production of carotenoids. Metabolic Engineering Communications, 2020, 10: e00118.
doi: 10.1016/j.mec.2019.e00118
[7] Holm A K, Blank L M, Oldiges M, et al. Metabolic and transcriptional response to cofactor perturbations in Escherichia coli. Journal of Biological Chemistry, 2010, 285(23): 17498-17506.
doi: 10.1074/jbc.M109.095570
[8] Rovira A R, Fin A, Tor Y. Emissive synthetic cofactors: an isomorphic, isofunctional, and responsive NAD+ analogue. Journal of the American Chemical Society, 2017, 139(44): 15556-15559.
doi: 10.1021/jacs.7b05852
[9] Hallé F, Fin A, Rovira A R, et al. Emissive synthetic cofactors: enzymatic interconversions of tzA analogues of ATP, NAD+, NADH, NADP+, and NADPH. Angewandte Chemie (International Ed in English), 2018, 57(4): 1087-1090.
doi: 10.1002/anie.201711935
[10] Dai Z F, Zhang X N, Nasertorabi F, et al. Facile chemoenzymatic synthesis of a novel stable mimic of NAD+. Chemical Science, 2018, 9(44): 8337-8342.
doi: 10.1039/C8SC03899F
[11] Ji D B, Wang L, Hou S H, et al. Creation of bioorthogonal redox systems depending on nicotinamide flucytosine dinucleotide. Journal of the American Chemical Society, 2011, 133(51): 20857-20862.
doi: 10.1021/ja2074032
[12] Wang X, Feng Y, Guo X, et al. Creating enzymes and self-sufficient cells for biosynthesis of the non-natural cofactor nicotinamide cytosine dinucleotide. Nature Communications, 2021, 12: 2116.
doi: 10.1038/s41467-021-22357-z
[13] Wang L, Ji D B, Liu Y X, et al. Synthetic cofactor-linked metabolic circuits for selective energy transfer. ACS Catalysis, 2017, 7(3): 1977-1983.
doi: 10.1021/acscatal.6b03579
[14] Liu Y X, Feng Y B, Wang L, et al. Structural insights into phosphite dehydrogenase variants favoring a non-natural redox cofactor. ACS Catalysis, 2019, 9(3): 1883-1887.
doi: 10.1021/acscatal.8b04822
[15] Guo X J, Liu Y X, Wang Q, et al. Non-natural cofactor and formate-driven reductive carboxylation of pyruvate. Angewandte Chemie (International Ed in English), 2020, 59(8): 3143-3146.
doi: 10.1002/anie.201915303
[16] Liu Y X, Li Q, Wang L, et al. Engineering d-lactate dehydrogenase to favor an non-natural cofactor nicotinamide cytosine dinucleotide. ChemBioChem, 2020, 21(14): 1972-1975.
doi: 10.1002/cbic.201900766
[17] 王俊婷, 郭潇佳, 李青, 等. 创制非天然辅酶偏好型甲醇脱氢酶. 合成生物学, 2021, 2(4): 651-661.
Wang J T, Guo X J, Li Q, et al. Creation of non-natural cofactor-dependent methanol dehydrogenase. Synthetic Biology Journal, 2021, 2(4): 651-661.
[18] Park Y K, Nicaud J M, Ledesma-Amaro R. The engineering potential of Rhodosporidium toruloides as a workhorse for biotechnological applications. Trends in Biotechnology, 2018, 36(3): 304-317.
doi: 10.1016/j.tibtech.2017.10.013
[19] Liu Z J, Fels M, Dragone G, et al. Effects of inhibitory compounds derived from lignocellulosic biomass on the growth of the wild-type and evolved oleaginous yeast Rhodosporidium toruloides. Industrial Crops and Products, 2021, 170: 113799.
doi: 10.1016/j.indcrop.2021.113799
[20] Li Y H, Zhao Z B, Bai F W. High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme and Microbial Technology, 2007, 41(3): 312-317.
doi: 10.1016/j.enzmictec.2007.02.008
[21] Wu S G, Zhao X, Shen H W, et al. Microbial lipid production by Rhodosporidium toruloides under sulfate-limited conditions. Bioresource Technology, 2011, 102(2): 1803-1807.
doi: 10.1016/j.biortech.2010.09.033
[22] Wu S G, Hu C M, Jin G J, et al. Phosphate-limitation mediated lipid production by Rhodosporidium toruloides. Bioresource Technology, 2010, 101(15): 6124-6129.
doi: 10.1016/j.biortech.2010.02.111
[23] Zhang Y, Peng J, Zhao H M, et al. Engineering oleaginous yeast Rhodotorula toruloides for overproduction of fatty acid ethyl esters. Biotechnology for Biofuels, 2021, 14(1): 115.
doi: 10.1186/s13068-021-01965-3 pmid: 33964988
[24] Ratledge C, Wynn J P. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Advances in Applied Microbiology, 2002, 51: 1-51.
pmid: 12236054
[25] Zhu Z W, Zhang S F, Liu H W, et al. A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nature Communications, 2012, 3: 1112.
doi: 10.1038/ncomms2112
[26] Wan L, Wang X Y, Hu Y H, et al. Gram-scale biocatalytic preparation of the non-natural cofactor nicotinamide cytosine dinucleotide. Tetrahedron Letters, 2022, 88: 153568.
doi: 10.1016/j.tetlet.2021.153568
[27] Lazo G R, Stein P A, Ludwig R A. A DNA transformation-competent Arabidopsis genomic library in agrobacterium. Bio/Technology, 1991, 9 (10): 963-967.
doi: 10.1038/nbt1091-963
[28] Lin X P, Wang Y N, Zhang S F, et al. Functional integration of multiple genes into the genome of the oleaginous yeast Rhodosporidium toruloides. FEMS Yeast Research, 2014, 14(4): 547-555.
doi: 10.1111/1567-1364.12140
[29] Lyu L T, Chu Y D, Zhang S F, et al. Engineering the oleaginous yeast Rhodosporidium toruloides for improved resistance against inhibitors in biomass hydrolysates. Frontiers in Bioengineering and Biotechnology, 2021, 9: 768934.
doi: 10.3389/fbioe.2021.768934
[30] 张琦, 焦翔, 刘香健, 等. 圆红冬孢酵母的密码子用法分析. 菌物学报, 2018, 37(11): 1454-1465.
Zhang Q, Jiao X, Liu X J, et al. Analysis of codon usage in Rhodosporidium toruloides. Mycosystema, 2018, 37(11): 1454-1465.
[31] van den Ent F, Löwe J. RF cloning: a restriction-free method for inserting target genes into plasmids. Journal of Biochemical and Biophysical Methods, 2006, 67(1): 67-74.
doi: 10.1016/j.jbbm.2005.12.008
[32] Unger T, Jacobovitch Y, Dantes A, et al. Applications of the Restriction Free (RF) cloning procedure for molecular manipulations and protein expression. Journal of Structural Biology, 2010, 172(1): 34-44.
doi: 10.1016/j.jsb.2010.06.016
[33] Lin X P, Yang F, Zhou Y J, et al. Highly-efficient colony PCR method for red yeasts and its application to identify mutations within two leucine auxotroph mutants. Yeast (Chichester, England), 2012, 29(11): 467-474.
doi: 10.1002/yea.2926
[34] Sorci L, Martynowski D, Rodionov D A, et al. Nicotinamide mononucleotide synthetase is the key enzyme for an alternative route of NAD biosynthesis in Francisella tularensis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3083-3088.
[35] Sherman F. Getting started with yeast. Methods in Enzymology, 2002, 350: 3-41.
pmid: 12073320
[36] Atkins J F, Wills N M, Loughran G, et al. A case for "StopGo": reprogramming translation to augment codon meaning of GGN by promoting unconventional termination (Stop) after addition of Glycine and then allowing continued translation (Go). RNA (New York, N Y), 2007, 13(6): 803-810.
[37] Jiao X, Zhang Q, Zhang S F, et al. Efficient co-expression of multiple enzymes from a single promoter mediated by virus 2A sequence in the oleaginous yeast Rhodosporidium toruloides. FEMS Yeast Research, 2018, 18(8): foy086.
[38] Geiselman G M, Zhuang X, Kirby J, et al. Production of ent-kaurene from lignocellulosic hydrolysate in Rhodosporidium toruloides. Microbial Cell Factories, 2020, 19(1): 24.
doi: 10.1186/s12934-020-1293-8 pmid: 32024522
[39] Wilson C, Bellen H J, Gehring W J. Position effects on eukaryotic gene expression. Annual Review of Cell Biology, 1990, 6: 679-714.
pmid: 2275824
[40] Chen X S, Zhang J Z. The genomic landscape of position effects on protein expression level and noise in yeast. Cell Systems, 2016, 2(5): 347-354.
doi: 10.1016/j.cels.2016.03.009
[41] Evans C, Bogan K L, Song P, et al. NAD+ metabolite levels as a function of vitamins and calorie restriction: evidence for different mechanisms of longevity. BMC Chemical Biology, 2010, 10: 2.
doi: 10.1186/1472-6769-10-2
[42] Park J O, Rubin S A, Xu Y F, et al. Metabolite concentrations, fluxes and free energies imply efficient enzyme usage. Nature Chemical Biology, 2016, 12 (7): 482-489.
doi: 10.1038/nchembio.2077
[43] Belenky P A, Moga T G, Brenner C. Saccharomyces cerevisiae YOR071C encodes the high affinity nicotinamide riboside transporter Nrt1. Journal of Biological Chemistry, 2008, 283(13): 8075-8079.
doi: 10.1074/jbc.C800021200 pmid: 18258590
[44] Bieganowski P, Brenner C. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a preiss-handler independent route to NAD+ in fungi and humans. Cell, 2004, 117(4): 495-502.
doi: 10.1016/s0092-8674(04)00416-7 pmid: 15137942
[45] Croft T, Venkatakrishnan P, Lin S J. NAD+ metabolism and regulation: lessons from yeast. Biomolecules, 2020, 10(2): 330.
doi: 10.3390/biom10020330
[46] Garten A, Schuster S, Penke M, et al. Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nature Reviews Endocrinology, 2015, 11 (9): 535-546.
doi: 10.1038/nrendo.2015.117 pmid: 26215259
[47] Ostrander D B, O’Brien D J, Gorman J A, et al. Effect of CTP synthetase regulation by CTP on phospholipid synthesis in Saccharomyces cerevisiae. Journal of Biological Chemistry, 1998, 273(30): 18992-19001.
doi: 10.1074/jbc.273.30.18992 pmid: 9668079
[48] Zhang S Y, Ito M, Skerker J M, et al. Metabolic engineering of the oleaginous yeast Rhodosporidium toruloides IFO 0880 for lipid overproduction during high-density fermentation. Applied Microbiology and Biotechnology, 2016, 100(21): 9393-9405.
doi: 10.1007/s00253-016-7815-y
[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 黄焕邦,吴洋,杨友辉,王兆官,齐浩. 基于古菌酪氨酰tRNA合成酶非天然氨基酸插入的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 110-125.
[3] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[4] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[5] 郑义,郭世英,隋凤翔,杨骐羽,卫雅萱,李晓岩. 群体感应系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(11): 100-109.
[6] 察亚平, 朱牧孜, 李爽. 体内连续定向进化研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 42-51.
[7] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[8] 常璐, 黄娇芳, 董浩, 周斌辉, 朱小娟, 庄英萍. 合成生物学改造微生物及生物被膜用于重金属污染检测与修复 *[J]. 中国生物工程杂志, 2021, 41(1): 62-71.
[9] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[10] 张玉婷,李伟国,梁冬梅,乔建军,财音青格乐. P450s在萜类合成方面的合成生物学研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 84-96.
[11] 王震,李霞,元英进. 微生物异源合成咖啡酸及其酯类衍生物研究进展 *[J]. 中国生物工程杂志, 2020, 40(7): 91-99.
[12] 孙青,刘德华,陈振. 甲醇的生物利用与转化*[J]. 中国生物工程杂志, 2020, 40(10): 65-75.
[13] 刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.
[14] 谢华玲,李东巧,迟培娟,杨艳萍. 合成生物学领域专利竞争态势分析[J]. 中国生物工程杂志, 2019, 39(4): 114-123.
[15] 马雅婷,刘珍宁,刘雪,於洪建,赵广荣. 微生物异源合成植物异喹啉生物碱的新进展 *[J]. 中国生物工程杂志, 2019, 39(11): 123-131.