Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (10): 76-84    DOI: 10.13523/j.cb.2005070
综述     
微生物合成根皮素及其糖苷研究进展 *
刘金丛1,刘雪1,於洪建2,赵广荣1,**()
1 天津大学化工学院 教育部合成生物学前沿科学中心 系统生物工程教育部重点实验室 天津 300072
2 天津市益倍生物科技集团 天津 300450
Recent Advances in Microbial Production of Phloretin and Its Glycosides
LIU Jin-cong1,LIU Xue1,YU Hong-jian2,ZHAO Guang-rong1,**()
1 School of Chemical Engineering and Technology, Tianjin University, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, China
2 Ubasio Biotech Go.,Ltd., Tianjin 300450, China
 全文: PDF(3093 KB)   HTML
摘要:

根皮素及其糖苷是二氢查耳酮类天然产物,具有抗氧化、抗炎和抑菌等多种生理活性,可应用于食品、药品、化妆品等行业。目前,根皮素及其糖苷主要从植物中提取,但含量低、组分复杂制约了高效、低成本的分离制备。随着合成生物学的发展,工程微生物生产根皮素及其糖苷将是一种有潜力的方法。综述了微生物合成根皮素及其糖苷的关键基因鉴定、代谢途径重构和优化策略,并针对酶的特异性差、副产物多等问题提出了技术对策。

关键词: 根皮素根皮素糖苷微生物合成代谢工程合成生物学    
Abstract:

Phloretin and its glycosides are natural dihydrochalcones with various physiological activities, such as antioxidant, anti-inflammatory and anti-bacterial activities, and have potential application in food, pharmaceutical, and cosmetics industries. At present, phloretin and its glycosides are mainly extracted from plants. However, the low content and complex components make it difficult to prepare products with high efficiency and low cost. With the development of metabolic engineering and synthetic biology, microbial production of phloretin and its glycosides has become an alternative approach. This article reviews the identification of key genes, the reconstruction of synthetic pathways and optimization strategies for the biosynthesis of phloretin and its glycosides. Finally, the potential strategies to solve existing problems as unspecific enzymes and the formation of multiple byproducts were proposed.

Key words: Phloretin    Phloretin-glycosides    Microbial production    Metabolic engineering    Synthetic biology
收稿日期: 2020-05-31 出版日期: 2020-11-10
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(31870077)
通讯作者: 赵广荣     E-mail: grzhao@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘金丛
刘雪
於洪建
赵广荣

引用本文:

刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.

LIU Jin-cong,LIU Xue,YU Hong-jian,ZHAO Guang-rong. Recent Advances in Microbial Production of Phloretin and Its Glycosides. China Biotechnology, 2020, 40(10): 76-84.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2005070        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I10/76

图1  根皮素及其糖苷化合物结构
图2  根皮素和柚皮素生物合成途径
图3  代谢工程微生物合成根皮素
微生物 表达的编码酶 发酵方式 产量(mg/L) 参考文献
酿酒酵母 PAL2,C4H,CPR1,At4CL2,HaCHS,TSC13 葡萄糖,深微孔板培养 42.7 [17]
酿酒酵母 At4CL,HaCHS 添加4-二氢香豆酸,摇瓶培养 36.0 [18]
酿酒酵母 Hea4CL,HeaCHS 添加4-二氢香豆酸,摇瓶培养 48.0 [19]
酿酒酵母 Hea4CL,ErbCHS 添加4-二氢香豆酸,摇瓶培养 63.6 [19]
酿酒酵母 Hea4CL,ErbCHS,MatBC 添加4-二氢香豆酸,摇瓶培养 73.2 [19]
酿酒酵母 Hea4CL,ErbCHS,ADH2,ALD6,ACS,ACC1 添加4-二氢香豆酸,摇瓶培养 76.2 [19]
酿酒酵母 Hea4CL,ErbCHS,ADH2,ALD6,ACS,MatBC 添加4-二氢香豆酸,摇瓶培养 83.2 [19]
酿酒酵母 Hea4CL,ErbCHS,ADH2,ALD6,ACS,MatBC 添加4-二氢香豆酸,5L发酵罐 619.5 [19]
大肠杆菌 At4CL, AtCHS 添加4-二氢香豆酸,摇瓶培养 未报道 [20]
表1  微生物合成根皮素
图4  根皮素糖基转移酶的系统发育树
[1] Mariadoss A V A, Vinyagam R, Rajamanickam V, et al. Pharmacological aspects and potential use of phloretin: a systemic review. Mini Reviews in Medicinal Chemistry, 2019,19(13):1060-1067.
doi: 10.2174/1389557519666190311154425 pmid: 30864525
[2] Zheng W, Chen C, Zhang C, et al. The protective effect of phloretin in osteoarthritis: an in vitro and in vivo study. Food & Function, 2018,9(1):263-278.
pmid: 29168867
[3] 冯甜, 王力彬, 周楠, 等. 根皮素的研究进展. 转化医学杂志, 2017,6(1):42-46.
Feng T, Wang L, Zhou N, et al. Advance in studies on phloretin. Translational Medicine Journal, 2017,6(1):42-46.
[4] Bays H. Sodium glucose co-transporter type 2 (sglt2) inhibitors: targeting the kidney to improve glycemic control in diabetes mellitus. Diabetes Therapy, 2013,4(2):195-220.
doi: 10.1007/s13300-013-0042-y pmid: 24142577
[5] Lei L, Huang B, Liu A, et al. Enzymatic production of natural sweetener trilobatin from citrus flavanone naringin using immobilised α-l-rhamnosidase as the catalyst. International Journal of Food Science & Technology, 2018,53(9):2097-2103.
[6] Yang S, Lee C, Lee B S, et al. Renal protective effects of aspalathin and nothofagin from rooibos (Aspalathus linearis) in a mouse model of sepsis. Pharmacological Reports, 2018,70(6):1195-1201.
doi: 10.1016/j.pharep.2018.07.004 pmid: 30340097
[7] 崔树梅, 曹孟岑, 杨雪晨, 等. 根皮素在化妆品中的应用. 日用化学工业, 2018,48(2):113-118.
Cui S M, Cao M C, Yang X C, et al. Applications of phloretin in cosmetics. China Surfactant Detergent & Cosmetics, 2018,48(2):113-118.
[8] Cravens A, Payne J, Smolke C D. Synthetic biology strategies for microbial biosynthesis of plant natural products. Nature Communications, 2019,10(1):2142.
doi: 10.1038/s41467-019-09848-w pmid: 31086174
[9] Yang D, Park S Y, Park Y S, et al. Metabolic engineering of Escherichia coli for natural product biosynthesis. Trends in Biotechnology, 2020,38(7):745-765.
doi: 10.1016/j.tibtech.2019.11.007 pmid: 31924345
[10] Avadhani P N, Towers G H. Fate of phenylalanine-C14 and cinnamic acid-C14 in Malus in relation to phloridzin synthesis. Canadian Journal of Biochemistry and Physiology, 1961,39(10):1605-1616.
[11] Gosch C, Halbwirth H, Kuhn J, et al. Biosynthesis of phloridzin in apple (Malus domestica Borkh). Plant Science, 2009,176(2):223-231.
[12] Dare A P, Tomes S, Cooney J M, et al. The role of enoyl reductase genes in phloridzin biosynthesis in apple. Plant Physiology & Biochemistry, 2013,72:54-61.
pmid: 23510577
[13] Ibdah M, Berim A, Martens S, et al. Identification and cloning of an NADPH-dependent hydroxycinnamoyl-CoA double bond reductase involved in dihydrochalcone formation in Malus x domestica Borkh. Phytochemistry, 2014,107:24-31.
doi: 10.1016/j.phytochem.2014.07.027 pmid: 25152451
[14] Yahyaa M, Ali S, Davidovich-Rikanati R, et al. Characterization of three chalcone synthase-like genes from apple (Malus x domestica Borkh). Phytochemistry, 2017,140:125-133.
doi: 10.1016/j.phytochem.2017.04.022 pmid: 28482241
[15] Jiang H, Wood K V, Morgan J A. Metabolic engineering of the phenylpropanoid pathway in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2005,71(6):2962-2969.
doi: 10.1128/AEM.71.6.2962-2969.2005 pmid: 15932991
[16] Lehka B J, Eichenberger M, Bjorn-Yoshimoto W E, et al. Improving heterologous production of phenylpropanoids in Saccharomyces cerevisiae by tackling an unwanted side reaction of Tsc13, an endogenous double bond reductase. FEMS Yeast Reserach, 2017, 17(1): fox004.
[17] Eichenberger M, Lehka B J, Folly C, et al. Metabolic engineering of Saccharomyces cerevisiae for de novo production of dihydrochalcones with known antioxidant, antidiabetic, and sweet tasting properties. Metabolic Engineering, 2017,39:80-89.
doi: 10.1016/j.ymben.2016.10.019 pmid: 27810393
[18] Werner S R, Chen H, Jiang H, et al, 2010. Synthesis of non-natural flavanones and dihydrochalcones in metabolically engineered yeast. Journal of Molecular Catalysis B Enzymatic, 2010,66(3):257-263.
[19] Jiang C, Liu X, Chen X, et al. Raising the production of phloretin by alleviation of by-product of chalcone synthase in the engineered yeast. Science China Life Sciences, 2020, doi: 10.1007/s11427-019-1634-8.
doi: 10.1007/s11427-019-1634-8 pmid: 32975722
[20] Watts K T, Lee P C, Schmidt-Dannert C. Exploring recombinant flavonoid biosynthesis in metabolically engineered Escherichia coli. ChemBioChem, 2004,5(4):500-507.
doi: 10.1002/cbic.200300783 pmid: 15185374
[21] Yu H N, Liu X Y, Gao S, et al. Structural and biochemical characterization of the plant type III polyketide synthases of the liverwort, Marchantia paleacea. Plant Physiology and Biochemistry, 2018,125:95-105.
doi: 10.1016/j.plaphy.2018.01.030 pmid: 29428820
[22] Elejalde-Palmett C, Billet K, Lanoue A, et al. Genome-wide identification and biochemical characterization of the UGT88F subfamily in Malus x domestica Borkh. Phytochemistry, 2019,157:135-144.
doi: 10.1016/j.phytochem.2018.10.019 pmid: 30399496
[23] Gosch C, Halbwirth H, Schneider B, et al. Cloning and heterologous expression of glycosyltransferases from Malus x domestica and Pyrus communis, which convert phloretin to phloretin 2'-O-glucoside (phloridzin). Plant Science, 2009,178(3):299-306.
[24] Gosch C, Flachowsky H, Halbwirth H, et al. Substrate specificity and contribution of the glycosyltransferase UGT71A15 to phloridzin biosynthesis. Trees-Structure and Function, 2012,26(1):259-271.
[25] Jugdé H, Nguy D, Moller I, et al. Isolation and characterization of a novel glycosyltransferase that converts phloretin to phlorizin, a potent antioxidant in apple. FEBS Journal, 2008,275(15):3804-3814.
doi: 10.1111/j.1742-4658.2008.06526.x pmid: 18573104
[26] Zhang T, Liang J, Wang P, et al. Purification and characterization of a novel phloretin-2'-O-glycosyltransferase favoring phloridzin biosynthesis. Scientific Reports, 2016,6:35274.
doi: 10.1038/srep35274 pmid: 27731384
[27] Yahyaa M, Davidovich-Rikanati R, Eyal Y, et al. Identification and characterization of UDP-glucose: Phloretin 4'-O glycosyltransferase from Malus x domestica Borkh. Phytochemistry, 2016,130:47-55.
doi: 10.1016/j.phytochem.2016.06.004 pmid: 27316677
[28] Pandey R P, Li T F, Kim E H, et al. Enzymatic synthesis of novel phloretin glucosides. Applied & Environmental Microbiology, 2013,79(11):3516-3521.
doi: 10.1128/AEM.00409-13 pmid: 23542617
[29] Bungaruang L, Gutmann A, Nidetzky B. Leloir glycosyltransferases and natural product glycosylation: Biocatalytic synthesis of the C-glucoside nothofagin, a major antioxidant of redbush herbal tea. Advanced Synthesis & Catalysis, 2013,355(14-15):2757-2763.
doi: 10.1002/adsc.201300251 pmid: 24415961
[30] Nagatomo Y, Usui S, Ito T, et al. Purification, molecular cloning and functional characterization of flavonoid C-glucosyltransferases from Fagopyrum esculentum M. (buckwheat) cotyledon. The Plant Journal, 2014,80(3):437-448.
doi: 10.1111/tpj.12645 pmid: 25142187
[31] Ito T, Fujimoto S, Suito F, et al. C-glycosyltransferases catalyzing the formation of di-C-glucosyl flavonoids in citrus plants. Plant Journal, 2017,91(2):187-198.
doi: 10.1111/tpj.13555 pmid: 28370711
[32] Zhang M, Li F D, Li K, et al. Functional characterization and structural basis of an efficient di-C-glycosyltransferase from Glycyrrhiza glabra. Journal of the American Chemical Society, 2020,142(7):3506-3512.
pmid: 31986016
[33] Chen D, Sun L, Chen R, et al. Enzymatic synthesis of acylphloroglucinol 3-C-glucosides from 2-O-glucosides using a C-glycosyltransferase from Mangifera indica. Chemistry A European Journal, 2016,22(17):5873-5877.
doi: 10.1002/chem.201600411
[34] Ban Z, Qin H, Mitchell A J, et al. Noncatalytic chalcone isomerase-fold proteins in Humulus lupulus are auxiliary components in prenylated flavonoid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2018,115(22):E5223-E5232.
[35] Medema M H, Osbourn A. Computational genomic identification and functional reconstitution of plant natural product biosynthetic pathways. Nature Product Reports, 2016,33(8):951-962.
[36] Santamaría L, Reverón I, López de Felipe F, et al. Unravelling the reduction pathway as an alternative metabolic route to hydroxycinnamate decarboxylation in Lactobacillus plantarum. Applied & Environmental Microbiology, 2018,84(15):e01123-18.
doi: 10.1128/AEM.01123-18 pmid: 29776925
[37] Stompor M, Kałuzny M, Zarowaka B. Biotechnological methods for chalcone reduction using whole cells of Lactobacillus, Rhodococcus and Rhodotorula strains as a way to produce new derivatives. Applied Microbiology and Biotechnology, 2016,100(19):8371-8384.
doi: 10.1007/s00253-016-7607-4 pmid: 27209040
[38] Zyszka B, Anioł M, Lipok J. Highly effective, regiospecific reduction of chalcone by cyanobacteria leads to the formation of dihydrochalcone: two steps towards natural sweetness. Microbial Cell Factories, 2017,16(1):136-151.
doi: 10.1186/s12934-017-0752-3 pmid: 28778165
[39] Xiong D, Lu S, Wu J, et al. Improving key enzyme activity in phenylpropanoid pathway with a designed biosensor. Metabolic Engineering, 2017,40:115-123.
doi: 10.1016/j.ymben.2017.01.006 pmid: 28111248
[40] Morita H, Wong C P, Abe I. How structural subtleties lead to molecular diversity for the type III polyketide synthases. Journal of Biological Chemistry, 2019,294(41):15121-15136.
doi: 10.1074/jbc.REV119.006129 pmid: 31471316
[41] Camacho-Zaragoza J M, Hernández-Chávez G, Moreno-Avitia F, et al. Engineering of a microbial coculture of Escherichia coli strains for the biosynthesis of resveratrol. Microbial Cell Factories, 2016,15(1):163.
doi: 10.1186/s12934-016-0562-z pmid: 27680538
[42] Fang Z, Jones J A, Zhou J, et al. Engineering Escherichia coli co-cultures for production of curcuminoids from glucose. Biotechnology Journal, 2018,13(5):1700576.
[44] Akdemir H, Silva A, Zha J, et al. Production of pyranoanthocyanins using Escherichia coli co-cultures. Metabolic Engineering, 2019,55:290-298.
doi: 10.1016/j.ymben.2019.05.008 pmid: 31125607
Liu X, Li X B, Jiang J, et al. Convergent engineering of syntrophic Escherichia coli coculture for efficient production of glycosides. Metabolic Engineering, 2018,47:243-253.
[45] Liu X, Li L, Liu J, et al. Metabolic engineering Escherichia coli for efficient production of icariside D2. Biotechnology for Biofuels, 2019,12:261.
doi: 10.1186/s13068-019-1601-x pmid: 31709010
[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 黄焕邦,吴洋,杨友辉,王兆官,齐浩. 基于古菌酪氨酰tRNA合成酶非天然氨基酸插入的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 110-125.
[3] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[4] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.
[5] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[6] 郑义,郭世英,隋凤翔,杨骐羽,卫雅萱,李晓岩. 群体感应系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(11): 100-109.
[7] 李媛媛,李妍,曹英秀,宋浩. 黄素介导的胞外电子转移研究与工程改造*[J]. 中国生物工程杂志, 2021, 41(10): 89-99.
[8] 察亚平, 朱牧孜, 李爽. 体内连续定向进化研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 42-51.
[9] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[10] 常璐, 黄娇芳, 董浩, 周斌辉, 朱小娟, 庄英萍. 合成生物学改造微生物及生物被膜用于重金属污染检测与修复 *[J]. 中国生物工程杂志, 2021, 41(1): 62-71.
[11] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[12] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[13] 张玉婷,李伟国,梁冬梅,乔建军,财音青格乐. P450s在萜类合成方面的合成生物学研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 84-96.
[14] 王震,李霞,元英进. 微生物异源合成咖啡酸及其酯类衍生物研究进展 *[J]. 中国生物工程杂志, 2020, 40(7): 91-99.
[15] 薛艳婷,吴胜波,徐程杨,袁博鑫,杨书鹃,刘家亨,乔建军,朱宏吉. 群体感应在动态代谢调控中的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 74-83.