Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (5): 69-80    DOI: 10.13523/j.cb.2111056
综述     
ADC药物的抗体组成及其作用靶点研究进展*
曾弘烨,宁文静,罗文新**()
厦门大学公共卫生学院 国家传染病诊断试剂与疫苗工程技术研究中心 厦门 361102
Advances in the Study of Antibody Composition and Targets of ADC Drugs
ZENG Hong-ye,NING Wen-jing,LUO Wen-xin**()
National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, China
 全文: PDF(1316 KB)   HTML
摘要:

抗体药物偶联物(antibody-drug conjugates,ADC)是一类由单克隆抗体和小分子细胞毒性药物通过连接子偶联而成的新型生物治疗药物。与传统的细胞毒药物相比,ADC具有靶向性强、毒副作用小等优势,在临床上展现较好的治疗潜力。其中,抗体部分通过与肿瘤细胞表面的靶向抗原结合,精准地将小分子细胞毒性药物递送至肿瘤部位,从而实现肿瘤特异性杀伤效果,是影响ADC疗效的核心要素之一。对近年来ADC药物中抗体的组成及其作用靶点的研究进展进行了综述。

关键词: 抗体药物偶联物抗体新型抗体靶点    
Abstract:

Antibody drug conjugates (ADCs) are a type of novel anti-tumor drugs, which are composed of three components: antibody, cytotoxic drugs and linker. Compared with traditional cytotoxic drugs, ADC has the ability to specifically target tumor cell and release small molecular drugs to achieve the effect of tumor-specific killing, showing good therapeutic potential in clinical practice. Particularly, the antibody of ADC can accurately deliver small molecule cytotoxin to the tumor by combining with targeted antigens on the surface of tumor cell, which is one of the core elements affecting the efficacy of ADCs. The review outlines advances in the study of antibody composition and targets of ADC drugs.

Key words: Antibody drug conjugates(ADCs)    Antibody    Novel antibody    Target
收稿日期: 2021-11-29 出版日期: 2022-06-17
ZTFLH:  Q51  
基金资助: *国家自然科学基金(31900675)
通讯作者: 罗文新     E-mail: wxluo@xmu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
曾弘烨
宁文静
罗文新

引用本文:

曾弘烨,宁文静,罗文新. ADC药物的抗体组成及其作用靶点研究进展*[J]. 中国生物工程杂志, 2022, 42(5): 69-80.

ZENG Hong-ye,NING Wen-jing,LUO Wen-xin. Advances in the Study of Antibody Composition and Targets of ADC Drugs. China Biotechnology, 2022, 42(5): 69-80.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2111056        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I5/69

图1  ADC药物的结构示意图及其生物学特性
批准
年份
药物名称 抗体类型 靶点 适应证 连接子 毒性载荷 公司
2000 gemtuzumab
ozogamicin
人源化IgG4 CD33 CD33阳性急性髓系白血病 可清除腙键 卡奇霉素 Pfizer
2011 brentuximab
vedotin
嵌合抗体IgG1 CD30 霍奇金淋巴瘤、
大细胞淋巴瘤等
可清除val-cit连接子 MMAE Seattle
2013 ado-trastuzumab
emtansine
人源化IgG1 HER2 HER2阳性乳腺癌 不可清除硫醚键 DM1 Roche
2017 inotuzumab
ozogamicin
人源化IgG4 CD22 急性B淋巴细胞白血病 可清除腙键 卡奇霉素 Pfizer
gemtuzumab
ozogamicin*
人源化IgG4 CD33 CD33阳性急性髓系白血病 可清除腙键 卡奇霉素 Pfizer
2018 moxetumomab
pasudotox
鼠ScFv CD22 多毛细胞白血病 mc-vc-PABC 假单胞菌
外毒素A
AstraZeneca
2019 polatuzumab
vedotin-piiq
人源化IgG1k CD79β 弥漫性大B细胞淋巴瘤 可清除val-cit连接子 MMAE Roche
enfortumab
vedotin-ejfv
完全人源化
IgG1k
Nectin-4 晚期尿路上皮癌 可清除val-cit连接子 MMAE Seattle
fam-trastuzumab-
deruxtecan
人源化IgG1k HER2 转移性HER2阳性乳腺癌 可清除四肽连接子 Dxd Daiichi Sankyo
批准
年份
药物名称 抗体类型 靶点 适应证 连接子 毒性载荷 公司
2020 sacituzumab
govitecan-hziy
人源化IgG1k Trop-2 三阴性乳腺癌 Hydrolysable CL2A SN38 Immunomdecis
belantamab
mafodotin
人源化IgG1k BCMA 多发性骨髓瘤 Maleimidocaproyl MMAF Glaxo
SmithKline
cetuximab
sarotalocan sodium
嵌合抗体IgG1 EGFR 头颈部肿瘤 IRDye
700DX
Rakuten
Medical
2021 loncastuximab
tesirine
嵌合抗体 CD19 复发或难治性弥漫性大
B细胞淋巴瘤
Valine-alanine PBD ADC
Therapeutics
disitamab vedotin 人源化IgG1 HER2 HER2过表达的局部晚期或
转移性胃癌
可清除val-cit连接子 MMAE 荣昌生物
tisotumab
vedotin-tftv
完全人源化
IgG1tisotumab
TF 复发性或转移性宫颈癌 蛋白酶可切割连接子 MMAE Genmab A/S、
Seagen
表1  目前已上市的ADC药物[5⇓⇓⇓⇓-10]
抗体亚型 抗体血清
含量/%
半衰期 链间二硫
键数
通过FcγR的
免疫激活
通过C1q的
免疫激活
特点
IgG1 60 约21天 4 +++ ++ 半衰期长,ADCC与CDC效应强,含量高
IgG2 32 约21天 6 + + 会形成二硫键异构体,影响功能和结构
IgG3 4 约7天 13 ++++ +++ 能引发强的ADCC与CDC,但半衰期短
IgG4 4 约21天 4 ++ - 不稳定,容易形成半抗体或双特异抗体
表2  各种IgG抗体亚型[11-12]
抗体类型 优点 限制
鼠源单克隆抗体 能产生大量针对特定靶点的单克隆抗体 具有免疫源性,引起人抗鼠免疫反应,人体清除快
嵌合抗体 更低的免疫原性 还是会存在与鼠IgG可变区有关的人抗鼠免疫反应
人源化抗体 外源序列相比于嵌合抗体更少,免疫原性更低 重组的抗体往往特异性和亲和力较低
全人源化抗体 不存在人抗鼠抗体效应 需要使用噬菌体展示库、转基因鼠等技术才能制备
表3  不同来源抗体的优缺点[14]
靶点 药物名称 适应证 临床阶段 载荷 抗体 临床试验
编号
HER2 trastuzumab
duocarmazine
HER2阳性局部晚期或转移性乳腺癌、实体瘤 III期 多卡霉素(duocarmycin) 人源化抗HER2曲妥珠单抗 NCT03262935
NCT04602117
NCT04205630
BAT8001 HER2阳性晚期乳腺癌、实体瘤 III期 美坦素(maytansine) 曲妥珠单抗生物类似药 NCT04151329
NCT04185649
NCT04189211
ARX788 HER2阳性转移期乳腺癌、HER2低表达乳腺癌 II期/III期 微管蛋白抑制剂AS269 抗HER2单克隆抗体 NCT04829604
NCT05018702
NCT05018676
MRG002 HER2阳性的晚期或转移性乳腺癌、尿路上皮癌、胆道癌、胃/胃食管交界处癌 II期 甲基澳瑞他汀E(MMAE) 抗HER2单克隆抗体 NCT04924699
NCT04742153
NCT04839510
NCT04837508
NCT04492488
A166 HER2阳性晚期乳腺癌、胃癌 I期/II期 微管蛋白抑制剂(DUO-5) 人源化抗HER2曲妥珠单抗 NCT03602079
XMT1522 HER2阳性晚期乳腺癌 I期 微管蛋白抑制剂澳瑞他汀(Auristatin) 抗HER2单克隆抗体 NCT02952729
BAY2701439 HER2阳性晚期癌症 I期 钍-227 抗HER2单克隆抗体 NCT04147819
靶点 药物名称 适应证 临床阶段 载荷 抗体 临床试验
编号
BDC-1001 HER阳性晚期实体瘤 I期 TLR7/8激动剂 人源化抗HER2曲妥珠单抗 NCT04278144
EGFR depatuxizumab
mafodotin
多形性胶质母细胞瘤 III期(失败) 甲基澳瑞他汀F(MMAF) 抗EGFR嵌合抗体 NCT03419403
MRG003 EGFR阳性晚期或转移性非小细胞肺癌、胆道癌、鼻咽癌、胃癌等 II期 甲基澳瑞他汀E(MMAE) 抗EGFR单克隆抗体 NCT05126719
NCT05188209
NCT04838964
NCT04868162
AMG595 复发性脑胶质瘤 I期 美登素DM1(maytansinoid DM1) 抗EGFRvⅢ单克隆抗体 NCT01475006
TROP2 datopotamab
deruxtecan
晚期或不可切除的非小细胞肺癌等 III期 拓扑异构酶1抑制剂(Dxd) 抗Trop2单克隆抗体 NCT05104866
NCT04940325
NCT04656652
SKB264 局部晚期、转移性实体瘤 I期/II期 拓扑异构酶抑制剂(KL610023) 抗Trop2单克隆抗体 NCT04152499
JS108 晚期实体瘤 I期 微管蛋白去稳定剂(tub196) 重组人源化抗Trop2抗体 NCT04601285
叶酸受体α Mirvetuximab
Soravtansine
卵巢上皮癌、腹膜癌、输卵管癌 III期 美登素DM4 人源化抗FOLRα单克隆抗体 NCT05041257
NCT04606914
NCT04296890
MORAb-202 晚期实体瘤 I期/II期 微管蛋白抑制剂艾瑞布林(eribulin) 抗FOLRα法妥组单抗 NCT04300556
STRO-002 卵巢上皮癌、子宫内膜癌 I期 微管蛋白靶向剂哈米特林(hemiasterlin) 抗FolRa人IgG1抗体(SP8166) NCT05200364
NCT03748186
BCMA AMG224 多发性骨髓瘤 I期 美登素DM1 抗人BCMA单抗 NCT02561962
MEDI2228 多发性骨髓瘤 I期 PBD二聚体 全人源抗BCMA抗体 NCT03489525
CC-99712 多发性骨髓瘤 I期 抗BCMA单抗 NCT04036461
MUC1 SAR566658 实体瘤 I期 美登素DM4 抗MUC1抗体huDS6 NCT01156870
M1231 实体瘤 I期 哈米特林(hemiasterlin) 抗CD3/MUC1双特异抗体 NCT04695847
ROR1 zilovertamab
vedotin
实体瘤 II期 甲基澳瑞他汀E(MMAE) 抗ROR1单克隆抗体 NCT04504916
NBE-002 实体瘤 I期/II期 抗ROR1单抗 NCT04441099
CD19 denintuzumab
mafodotin
急性淋巴细胞白血病、非霍奇金淋巴瘤等 II期 mcMMAF 抗CD19单抗 NCT02855359
SGN-CD19B 弥漫性大B细胞淋巴瘤、非霍奇金淋巴瘤 I期 PBD二聚体 抗CD19单抗 NCT02702141
CD37 naratuximab
emtansine
B细胞恶性肿瘤、非霍奇金淋巴瘤等 II期 美登素DM1 抗CD37单抗
(naratuximab)
NCT02564744
Lutetium
lilotomab
satetraxetan
非霍奇金淋巴瘤 I期/II期 177Lu 抗CD37单抗
(lilotomab)
NCT01796171
CD33 vadastuximab
talirine
急性髓系白血病 III期 PBD二聚体 抗CD33半胱氨酸工程化人源化鼠抗 NCT02785900
HER3 patritumab
deruxtecan
非小细胞肺癌、乳腺癌、结直肠癌等实体瘤 II期 DX-8951 抗HER3单抗
(patritumab)
NCT04479436
NCT04619004
NCT04965766
DLL3 rovalpituzumab
tesirine
晚期小细胞肺癌 III期 PBD二聚体 抗DLL3单抗
(rovalpituzumab)
NCT03033511
靶点 药物名称 适应证 临床阶段 载荷 抗体 临床试验
编号
mesothelin
(间皮素)
Anetumab
ravtansine
实体瘤 II期 美登素DM4 全人源抗mesothelin
抗体
NCT03926143
GPNMB
(糖蛋白NMB)
glembatumumab
vedotin
乳腺癌 II期(终止) 甲基澳瑞他汀E(MMAE) 抗GPNMB单抗
(glembatumumab )
NCT03326258
NCAM-1
(CD56)
lorvotuzumab
mertansine
多发性骨髓瘤等 II期 美登素DM1 抗CD56单抗
(lorvotuzumab)
NCT02452554
IL-2Rα camidanlumab
tesirine
血液瘤 II期 PBD二聚体 完全人源化抗IL-2Rα抗体(camidanlumab) NCT04052997
CEA(CD66) tusamitamab
ravtansine
非小细胞肺癌等实体瘤 II期 美登素DM4 抗CEA单抗
(tusamitamab)
NCT04524689
NCT04394624
c-Met telisotuzumab
vedotin
非小细胞肺癌 II期 甲基澳瑞他汀E(MMAE) ABT-700(telisotuzumab) NCT03574753
AXL受体酪
氨酸激酶
BA3011 非小细胞肺癌等 II期 抗AXL肿瘤微环境条件性抗体 NCT04681131
NaPi2b(钠依赖性
磷酸转运蛋白)
upifitamab
rilsodotin
卵巢癌、非小细胞肺癌 I期/II期 auristatin 抗NaPi2b单抗 NCT04907968
NCT03319628
PSMA(前列腺特
异性膜抗原)
rosopatamab
tetraxetan
前列腺癌 I期/II期 美登素DM1 抗PSMA单抗
(rosopatamab)
NCT04886986
CD46 FOR46 多发性骨髓瘤、前列腺癌 I期/II期 抗CD46单抗 NCT05011188
CD20 MRG001 非霍奇金淋巴瘤 I期 甲基澳瑞他汀E(MMAE) 抗CD20单抗 NCT05155839
DEC-205 MEN1309 乳腺癌等实体瘤、非霍奇金淋巴瘤 I期 美登素DM4 全人源抗DEC-205
(CD205)抗体
NCT04064359
FZD10 tabituximab
barzuxetan
复发或难治性滑膜肉瘤 I期 钇90 OTSA101(tabituximab) NCT04176016
PTK7 cofetuzumab
pelidotin
复发性非小细胞肺癌 I期 Aur0101 抗PTK7单抗
(cofetuzumab)
NCT04189614
Integrin αvβ6
(整合素αvβ6)
SGN-B6A 实体瘤 I期 甲基澳瑞他汀E
(MMAE)
抗整合素αvβ6单抗 NCT04389632
LRRC15 samrotamab
vedotin
(ABBV-085)
实体瘤 I期 甲基澳瑞他汀E(MMAE) 抗LRRC15单抗
(samrotamab)
NCT02565758
表4  部分处于临床试验阶段的ADC药物
[1] Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nature Reviews Cancer, 2008, 8 (6): 473-480.
doi: 10.1038/nrc2394 pmid: 18469827
[2] Joubert N, Beck A, Dumontet C, et al. Antibody-drug conjugates: the last decade. Pharmaceuticals (Basel, Switzerland), 2020, 13(9): 245.
[3] Iyer U, Kadambi V J. Antibody drug conjugates:Trojan horses in the war on cancer. Journal of Pharmacological and Toxicological Methods, 2011, 64(3): 207-212.
doi: 10.1016/j.vascn.2011.07.005 pmid: 21843648
[4] Yu J F, Song Y P, Tian W Z. How to select IgG subclasses in developing anti-tumor therapeutic antibodies. Journal of Hematology & Oncology, 2020, 13(1): 45.
[5] Jin Y M, Schladetsch M A, Huang X T, et al. Stepping forward in antibody-drug conjugate development. Pharmacology & Therapeutics, 2022, 229: 107917.
[6] Dean A Q, Luo S, Twomey J D, et al. Targeting cancer with antibody-drug conjugates: promises and challenges. mAbs, 2021, 13(1): 1951427.
doi: 10.1080/19420862.2021.1951427
[7] Gomes-da-Silva L C, Kepp O, Kroemer G. Regulatory approval of photoimmunotherapy: photodynamic therapy that induces immunogenic cell death. OncoImmunology, 2020, 9(1): 1841393.
doi: 10.1080/2162402X.2020.1841393
[8] Caimi P F, Ai W Y, Alderuccio J P, et al. Loncastuximab tesirine in relapsed or refractory diffuse large B-cell lymphoma (LOTIS-2): a multicentre, open-label, single-arm, phase 2 trial. The Lancet Oncology, 2021, 22(6): 790-800.
doi: 10.1016/S1470-2045(21)00139-X
[9] Peng Z, Liu T, Wei J, et al. Efficacy and safety of a novel anti-HER2 therapeutic antibody RC 48 in patients with HER2-overexpressing, locally advanced or metastatic gastric or gastroesophageal junction cancer: a single-arm phase II study. Cancer Commun (Lond), 2021, 41(11): 1173-1182.
[10] BusinessWire. Seagen and Genmab announce FDA accelerated approval for TIVDAKTM tisotumab vedotin-tftv in previously treated recurrent or metastatic cervical cancer. [2021-09-20]. https://www.businesswire.com/news/home/20210920005921/en/.
[11] Beck A, Goetsch L, Dumontet C, et al. Strategies and challenges for the next generation of antibody-drug conjugates. Nature Reviews Drug Discovery, 2017, 16 (5): 315-337.
doi: 10.1038/nrd.2016.268
[12] Walsh S J, Bargh J D, Dannheim F M, et al. Site-selective modification strategies in antibody-drug conjugates. Chemical Society Reviews, 2021, 50(2): 1305-1353.
doi: 10.1039/D0CS00310G
[13] Kim E G, Kim K M. Strategies and advancement in antibody-drug conjugate optimization for targeted cancer therapeutics. Biomolecules & Therapeutics, 2015, 23 (6): 493-509.
[14] Christiansen J, Rajasekaran A K. Biological impediments to monoclonal antibody-based cancer immunotherapy. Molecular Cancer Therapeutics, 2004, 3(11): 1493-1501.
pmid: 15542788
[15] Labrijn A F, Janmaat M L, Reichert J M, et al. Bispecific antibodies: a mechanistic review of the pipeline. Nature Reviews Drug Discovery, 2019, 18 (8): 585-608.
doi: 10.1038/s41573-019-0028-1 pmid: 31175342
[16] Carter P J, Lazar G A. Next generation antibody drugs: pursuit of the ’high-hanging fruit. Nature Reviews Drug Discovery, 2018, 17 (3): 197-223.
doi: 10.1038/nrd.2017.227 pmid: 29192287
[17] Hamblett K J, Hammond P W, Barnscher S D, et al. ZW49, a HER2-targeted biparatopic antibody-drug conjugate for the treatment of HER2-expressing cancers. Cancer Research, 2018, 78(13 Supplement): 3914.
[18] DaSilva J O, Yang K T, Surriga O, et al. A biparatopic antibody-drug conjugate to treat MET-expressing cancers, including those that are unresponsive to MET pathway blockade. Molecular Cancer Therapeutics, 2021, 20(10): 1966-1976.
doi: 10.1158/1535-7163.MCT-21-0009 pmid: 34315762
[19] Lee N K, Su Y, Bidlingmaier S, et al. Manipulation of cell-type selective antibody internalization by a guide-effector bispecific design. Molecular Cancer Therapeutics, 2019, 18(6): 1092-1103.
doi: 10.1158/1535-7163.MCT-18-1313
[20] Chomet M, Schreurs M, Nguyen M, et al. The tumor targeting performance of anti-CD166 Probody drug conjugate CX-2009 and its parental derivatives as monitored by 89 Zr-immuno-PET in xenograft bearing mice. Theranostics, 2020, 10(13): 5815-5828.
doi: 10.7150/thno.44334
[21] Johnson M, El-Khoueiry A, Hafez N, et al. Phase I, first-in-human study of the probody therapeutic CX-2029 in adults with advanced solid tumor malignancies. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2021, 27(16): 4521-4530.
doi: 10.1158/1078-0432.CCR-21-0194
[22] Deonarain M P, Xue Q. Tackling solid tumour therapy with small-format drug conjugates. Antibody Therapeutics, 2020, 3(4): 237-245.
doi: 10.1093/abt/tbaa024 pmid: 33928231
[23] Liu M M, Li L, Jin D, et al. Nanobody:a versatile tool for cancer diagnosis and therapeutics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13(4): e1697.
[24] Wu T T, Liu J B, Liu M M, et al. A nanobody-conjugated DNA nanoplatform for targeted platinum-drug delivery. Angewandte Chemie International Edition, 2019, 58(40): 14224-14228.
[25] Liu M M, Zhu Y, Wu T T, et al. Nanobody-ferritin conjugate for targeted photodynamic therapy. Chemistry: A European Journal, 2020, 26(33): 7442-7450.
doi: 10.1002/chem.202000075
[26] Fang T, Duarte J N, Ling J J, et al. Structurally defined αMHC-II nanobody-drug conjugates: a therapeutic and imaging system for B-cell lymphoma. Angewandte Chemie (International Ed in English), 2016, 55(7): 2416-2420.
doi: 10.1002/anie.201509432
[27] Xenaki K T, Dorrestijn B, Muns J A, et al. Homogeneous tumor targeting with a single dose of HER2-targeted albumin-binding domain-fused nanobody-drug conjugates results in long-lasting tumor remission in mice. Theranostics, 2021, 11(11): 5525-5538.
doi: 10.7150/thno.57510
[28] Baral T N, Magez S, Stijlemans B, et al. Experimental therapy of African trypanosomiasis with a nanobody-conjugated human trypanolytic factor. Nature Medicine, 2006, 12 (5): 580-584.
pmid: 16604085
[29] Collins D M, Bossenmaier B, Kollmorgen G, et al. Acquired resistance to antibody-drug conjugates. Cancers, 2019, 11(3): 394.
doi: 10.3390/cancers11030394
[30] Turajlic S, Sottoriva A, Graham T, et al. Resolving genetic heterogeneity in cancer. Nature Reviews Genetics, 2019, 20 (7): 404-416.
doi: 10.1038/s41576-019-0114-6 pmid: 30918367
[31] Stokke J L, Bhojwani D. Antibody-drug conjugates for the treatment of acute pediatric leukemia. Journal of Clinical Medicine, 2021, 10(16): 3556.
doi: 10.3390/jcm10163556
[32] Costa R L B, Czerniecki B J. Clinical development of immunotherapies for HER2+ breast cancer: a review of HER2-directed monoclonal antibodies and beyond. Npj Breast Cancer, 2020, 6: 10.
doi: 10.1038/s41523-020-0153-3
[33] Shitara K, Bang Y J, Iwasa S, et al. Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. The New England Journal of Medicine, 2020, 382(25): 2419-2430.
doi: 10.1056/NEJMoa2004413 pmid: 32469182
[34] Siena S, Bartolomeo M D, Raghav K, et al. rastuzumab deruxtecan (DS-8201) in patients with HER2-expressing metastatic colorectal cancer (DESTINY-CRC01): a multicentre, open-label, phase 2 trial. The Lancet Oncology, 2021, 22(6): 779-789.
doi: 10.1016/S1470-2045(21)00086-3
[35] Li B T, Shen R L, Buonocore D, et al. Ado-trastuzumab emtansine for patients with HER2-mutant lung cancers: results from a phase II basket trial. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 2018, 36(24): 2532-2537.
doi: 10.1200/JCO.2018.77.9777
[36] Sheng X N, Yan X Q, Wang L, et al. Open-label, multicenter, phase II study of RC48-ADC, a HER2-targeting antibody-drug conjugate, in patients with locally advanced or metastatic urothelial carcinoma. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2021, 27(1): 43-51.
doi: 10.1158/1078-0432.CCR-20-2488
[37] Modi S N, Park H, Murthy R K, et al. Antitumor activity and safety of trastuzumab deruxtecan in patients with HER2-low-expressing advanced breast cancer: results from a phase ib study. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 2020, 38(17): 1887-1896.
doi: 10.1200/JCO.19.02318
[38] Shitara K, Iwata H, Takahashi S, et al. Trastuzumab deruxtecan (DS-8201a) in patients with advanced HER2-positive gastric cancer: a dose-expansion, phase 1 study. The Lancet Oncology, 2019, 20(6): 827-836.
doi: 10.1016/S1470-2045(19)30088-9
[39] Kang J C, Sun W, Khare P, et al. Engineering a HER2-specific antibody-drug conjugate to increase lysosomal delivery and therapeutic efficacy. Nature Biotechnology, 2019, 37 (5): 523-526.
doi: 10.1038/s41587-019-0073-7
[40] Li J Y, Perry S R, Muniz-Medina V, et al. A biparatopic HER2-targeting antibody-drug conjugate induces tumor regression in primary models refractory to or ineligible for HER2-targeted therapy. Cancer Cell, 2016, 29(1): 117-129.
doi: 10.1016/j.ccell.2015.12.008
[41] Nordstrom J L, Gorlatov S, Zhang W J, et al. Anti-tumor activity and toxicokinetics analysis of MGAH22, an anti-HER2 monoclonal antibody with enhanced Fcγ receptor binding properties. Breast Cancer Research, 2011, 13(6): R123.
doi: 10.1186/bcr3069
[42] Bang Y J, Giaccone G, Im S A, et al. First-in-human phase 1 study of margetuximab (MGAH22), an Fc-modified chimeric monoclonal antibody, in patients with HER2-positive advanced solid tumors. . Annals of Oncology, 2017, 28(4): 855-861.
doi: 10.1093/annonc/mdx002 pmid: 28119295
[43] Kang X H, Zhou L, Jian Y M, et al. Effectiveness of antibody-drug conjugate (ADC): results of in vitro and in vivo studies. Medical Science Monitor, 2018, 24: 1408-1416.
doi: 10.12659/MSM.908971
[44] Gan H K, Burgess A W, Clayton A H A, et al. Targeting of a conformationally exposed, tumor-specific epitope of EGFR as a strategy for cancer therapy. Cancer Research, 2012, 72(12): 2924-2930.
doi: 10.1158/0008-5472.CAN-11-3898
[45] Cleary J M, Reardon D A, Azad N, et al. A phase 1 study of ABT-806 in subjects with advanced solid tumors. Investigational New Drugs, 2015, 33(3): 671-678.
doi: 10.1007/s10637-015-0234-6 pmid: 25895099
[46] Chia P L, Parakh S, Tsao M S, et al. Targeting and efficacy of novel MAb806-antibody-drug conjugates in malignant mesothelioma. Pharmaceuticals (Basel, Switzerland), 2020, 13(10): 289.
[47] Phillips A C, Boghaert E R, Vaidya K S, et al. ABT-414, an antibody-drug conjugate targeting a tumor-selective EGFR epitope. Molecular Cancer Therapeutics, 2016, 15(4): 661-669.
doi: 10.1158/1535-7163.MCT-15-0901 pmid: 26846818
[48] Park K, Haura E B, Leighl N B, et al. Amivantamab in EGFR exon 20 insertion-mutated non-small-cell lung cancer progressing on platinum chemotherapy: initial results from the CHRYSALIS phase I study. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 2021, 39(30): 3391-3402.
doi: 10.1200/JCO.21.00662
[49] Goldenberg D M, Cardillo T M, Govindan S V, et al. Trop-2 is a novel target for solid cancer therapy with sacituzumab govitecan (IMMU-132), an antibody-drug conjugate (ADC). Oncotarget, 2015, 6(26): 22496-22512.
pmid: 26101915
[50] Bardia A, Hurvitz S A, Tolaney S M, et al. Sacituzumab govitecan in metastatic triple-negative breast cancer. The New England Journal of Medicine, 2021, 384(16): 1529-1541.
doi: 10.1056/NEJMoa2028485
[51] TROP2 ADC intrigues in NSCLC. Cancer Discovery, 2021, 11(5): OF5.
[52] Scaranti M, Cojocaru E, Banerjee S, et al. Exploiting the folate receptor α in oncology. Nature Reviews Clinical Oncology, 2020, 17 (6): 349-359.
doi: 10.1038/s41571-020-0339-5 pmid: 32152484
[53] Moore K N, Oza A M, Colombo N, et al. Phase III, randomized trial of mirvetuximab soravtansine versus chemotherapy in patients with platinum-resistant ovarian cancer: primary analysis of FORWARD I. Annals of Oncology, 2021, 32(6): 757-765.
doi: 10.1016/j.annonc.2021.02.017 pmid: 33667670
[54] Haikala H M, Jänne P A. Thirty years of HER3: from basic biology to therapeutic interventions. Clinical Cancer Research, 2021, 27(13): 3528-3539.
doi: 10.1158/1078-0432.CCR-20-4465 pmid: 33608318
[55] Yonesaka K. HER2-/ HER3-targeting antibody-drug conjugates for treating lung and colorectal cancers resistant to EGFR inhibitors. Cancers, 2021, 13(5): 1047.
doi: 10.3390/cancers13051047
[56] Powles T, Rosenberg J E, Sonpavde G P, et al. Enfortumab vedotin in previously treated advanced urothelial carcinoma. The New England Journal of Medicine, 2021, 384(12): 1125-1135.
doi: 10.1056/NEJMoa2035807
[57] M-Rabet M, Cabaud O, Josselin E, et al. Nectin-4: a new prognostic biomarker for efficient therapeutic targeting of primary and metastatic triple-negative breast cancer. Annals of Oncology, 2017, 28(4): 769-776.
doi: 10.1093/annonc/mdw678 pmid: 27998973
[58] Yap M L, McFadyen J D, Wang X W, et al. Activated platelets in the tumor microenvironment for targeting of antibody-drug conjugates to tumors and metastases. Theranostics, 2019, 9(4): 1154-1169.
doi: 10.7150/thno.29146
[59] Szot C, Saha S, Zhang X M, et al. Tumor stroma-targeted antibody-drug conjugate triggers localized anticancer drug release. The Journal of Clinical Investigation, 2018, 128(7): 2927-2943.
doi: 10.1172/JCI120481
[60] Breij E C W, de Goeij B E C G, Verploegen S, et al. An antibody-drug conjugate that targets tissue factor exhibits potent therapeutic activity against a broad range of solid tumors. Cancer Research, 2014, 74(4): 1214-1226.
doi: 10.1158/0008-5472.CAN-13-2440
[61] Coleman R L, Lorusso D, Gennigens C, et al. fficacy and safety of tisotumab vedotin in previously treated recurrent or metastatic cervical cancer (innovaTV 204/GOG-3023/ENGOT-cx6): a multicentre, open-label, single-arm, phase 2 study. The Lancet Oncology, 2021, 22(5): 609-619.
doi: 10.1016/S1470-2045(21)00056-5
[62] Bobrowicz M, Kubacz M, Slusarczyk A, et al. CD37 in B cell derived tumors-more than just a docking point for monoclonal antibodies. International Journal of Molecular Sciences, 2020, 21(24): 9531.
doi: 10.3390/ijms21249531
[63] Hicks S W, Lai K C, Gavrilescu L C, et al. The antitumor activity of IMGN529, a CD37-targeting antibody-drug conjugate, is potentiated by rituximab in non-Hodgkin lymphoma models. Neoplasia, 2017, 19(9): 661-671.
doi: 10.1016/j.neo.2017.06.001
[64] Wajant H. Therapeutic targeting of CD70 and CD27. Expert Opinion on Therapeutic Targets, 2016, 20(8): 959-973.
doi: 10.1517/14728222.2016.1158812
[65] Nath S, Mukherjee P. MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends in Molecular Medicine, 2014, 20(6): 332-342.
doi: 10.1016/j.molmed.2014.02.007
[66] Detappe A, Mathieu C, Jin C N, et al. Anti-MUC1-C antibody-conjugated nanoparticles potentiate the efficacy of fractionated radiation therapy. International Journal of Radiation Oncology Biology Physics, 2020, 108(5): 1380-1389.
doi: 10.1016/j.ijrobp.2020.06.069
[67] Wu G, Li L, Qiu Y X, et al. A novel humanized MUC 1 antibody-drug conjugate for the treatment of trastuzumab-resistant breast cancer. Acta Biochimica et Biophysica Sinica, 2021, 53(12): 1625-1639.
doi: 10.1093/abbs/gmab141
[68] Vaisitti T, Arruga F, Vitale N, et al. ROR1 targeting with the antibody-drug conjugate VLS-101 is effective in Richter syndrome patient-derived xenograft mouse models. Blood, 2021, 137(24): 3365-3377.
doi: 10.1182/blood.2020008404 pmid: 33512452
[69] Hu E Y, Do P, Goswami S, et al. The ROR1 antibody-drug conjugate huXBR1-402-G5-PNU effectively targets ROR1+ leukemia. Blood Advances, 2021, 5(16): 3152-3162.
doi: 10.1182/bloodadvances.2020003276
[1] 鲍奕恺,洪皓飞,施杰,周志昉,吴志猛. 靶向PSMA多价纳米抗体的制备及其生物学活性表征*[J]. 中国生物工程杂志, 2022, 42(5): 37-45.
[2] 陈阳, 刘彤, 张佳琦, 廖化新, 林跃智, 王晓钧, 王亚玉. 基于单个B细胞抗体基因扩增技术筛选马IgG1单克隆抗体*[J]. 中国生物工程杂志, 2022, 42(4): 17-23.
[3] 李开通, 刘金青, 蔡望伟, 肖曼, 沈倍奋, 王晶, 冯健男. 靶向人白介素-6蛋白的治疗性单克隆抗体研究进展*[J]. 中国生物工程杂志, 2022, 42(4): 58-67.
[4] 陈修月,周文锋,何庆,苏冰,邹亚文. 噬菌体Qβ病毒样颗粒的制备、纯化及鉴定[J]. 中国生物工程杂志, 2021, 41(7): 42-49.
[5] 史瑞,严景华. 抗新型冠状病毒单克隆中和抗体药物研发进展*[J]. 中国生物工程杂志, 2021, 41(6): 129-135.
[6] 陈文洁,苗先锋. 抗体偶联药物国内研发现状及企业布局分析[J]. 中国生物工程杂志, 2021, 41(6): 105-110.
[7] 许叶春,柳红,李剑峰,沈敬山,蒋华良. 抗新冠肺炎药物研究进展[J]. 中国生物工程杂志, 2021, 41(6): 111-118.
[8] 原博,王杰文,康广博,黄鹤. 双特异性纳米抗体的研究进展及其应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 78-88.
[9] 毛开云,李荣,李丹丹,赵若春,范月蕾,江洪波. 全球双特异性抗体药物研发格局分析*[J]. 中国生物工程杂志, 2021, 41(11): 110-118.
[10] 张赛,向乐,李林海,李辉军,王刚,钱纯亘. 新型冠状病毒(2019-nCoV)IgM /IgG抗体检测试剂的研制及性能评价[J]. 中国生物工程杂志, 2020, 40(8): 1-9.
[11] 赵妍淑,张金华,宋浩. 工程原核生物和酵母菌中生产单克隆抗体和抗体片段研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 74-83.
[12] 蔺士新,刘东晨,雷云,熊盛,谢秋玲. TNF-α纳米抗体的筛选、表达及特异性检测 *[J]. 中国生物工程杂志, 2020, 40(7): 15-21.
[13] 杨笑莹,李梦,赵威,唐敏,张志谦. 抗α2δ1/CD3双特异性抗体的制备和功能的初步研究 *[J]. 中国生物工程杂志, 2020, 40(7): 9-14.
[14] 武瑞君,李治非,张鑫,濮润,敖翼,孙燕荣. 新冠病毒抗体药物研发进展及展望分析[J]. 中国生物工程杂志, 2020, 40(5): 1-6.
[15] 王猛,宋慧茹,程雨洁,王毅,杨波,胡征. 以核糖体蛋白L7/L12为分子标志物精准检测肺炎链球菌的研究 *[J]. 中国生物工程杂志, 2020, 40(4): 34-41.