Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (5): 37-45    DOI: 10.13523/j.cb.2201019
研究报告     
靶向PSMA多价纳米抗体的制备及其生物学活性表征*
鲍奕恺,洪皓飞**(),施杰,周志昉,吴志猛**()
江南大学生物工程学院 糖化学与生物技术教育部重点实验室 无锡 214122
Development and Biological Activity Analysis of PSMA Specific Mutivalent Nanobodies
BAO Yi-kai,HONG Hao-fei**(),SHI Jie,ZHOU Zhi-fang,WU Zhi-meng**()
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
 全文: PDF(4151 KB)   HTML
摘要:

目的:构建原核表达系统,制备靶向前列腺特异性膜抗原(prostate-specific membrane antigen,PSMA)多价纳米抗体并初步评价其生物学活性。方法:Bglbrick法构建多价纳米抗体表达载体,转化至大肠杆菌表达并利用亲和层析法纯化。联合蛋白质电泳和Western blot验证纯化产物,BCA法检测表达量。通过免疫荧光和流式细胞术定性评估PSMA特异性亲和能力,细胞ELISA法定量检测PSMA亲和水平,流式细胞术检测内吞效率。结果:成功构建靶向PSMA单价、二价、三价和四价纳米抗体大肠杆菌表达菌株。发酵结果表明四种纳米抗体均能在摇瓶水平实现高效可溶表达,其中二价纳米抗体表达量最高[(259.14±23.56) mg/L],单价纳米抗体表达量最低[(100.58±6.27) mg/L]。亲和实验结果证实四种纳米抗体均能特异性识别并结合PSMA阳性肿瘤细胞,与单价纳米抗体相比,二价、三价和四价纳米抗体对PSMA亲和能力分别提高了3.32倍、2.29倍和2.03倍。最后的内吞实验显示四种纳米抗体均能被PSMA阳性肿瘤细胞高效摄取,30 min内的摄取率均在80%以上。结论:靶向PSMA的多价纳米抗体,尤其是二价纳米抗体,具有比单价纳米抗体更高的产量和亲和水平,且具备不亚于单价纳米抗体的内吞效率,是未来基于PSMA肿瘤诊疗试剂开发的重要候选。

关键词: 前列腺癌前列腺特异性膜抗原(PSMA)多价纳米抗体    
Abstract:

Objective: To express PSMA (prostate-specific membrane antigen) specific multivalent nanobodies in the prokaryotic system, and preliminarily evaluate their biological properties. Methods: The multivalent nanobody expression vectors were constructed by the Bglbrick method, and then transferred into E.coli Rosetta(DE3) for protein production. SDS-PAGE and Western blot assays were performed to identify the purified nanobody samples. BCA (bicinchoninic acid assay) kits were used for expression yield determination. The specific binding affinities were evaluated by immunofluorescence and flow cytometry. The binding EC50 values were detected by cell-based ELISA. The endocytosis efficiency was investigated via flow cytometry. Results: Recombinant E. coli strains for PSMA specific monovalent, bivalent, trivalent and tetravalent nanobodies production were successfully constructed, respectively. Fermentation results showed that all four kinds of nanobodies could be expressed as soluble proteins with high yields at shake flask level, among which the bivalent nanobody presented the highest expression yield [(259.14±23.56) mg/L], whereas the monovalent type lowest [(100.58±6.27) mg/L]. In the subsequent cell binding assays, results indicated that all four nanobody samples could specifically recognize and bind to PSMA-positive tumor cells. Notably, compared with monovalent nanobody, the binding affinity of bivalent, trivalent and tetravalent nanobodies were improved approximately 3.32-, 2.29- and 2.03-fold, respectively. Finally, the endocytosis experiments were conducted and the results suggested that all four kinds of nanobodies could be efficiently endocytosed by PSMA-positive tumor cells and the uptake rates in 0.5 h were all above 80%. Conclusion: PSMA specific multivalent nanobodies, especially PSMA specific bivalent nanobody, had higher expression yield and better binding affinity than monovalent nanobody. Meanwhile, they remained the same uptake level with monovalent nanobody. In this context, PSMA specific multivalent nanobodies could be a potential class of candidates for the development of PSMA-based therapies.

Key words: Prostate cancer    PSMA    Multivalent nanobodies
收稿日期: 2022-01-15 出版日期: 2022-06-17
ZTFLH:  Q816  
基金资助: *国家自然科学基金(32000904);国家自然科学基金(21907038);国家自然科学基金(22177040);江苏省自然科学基金(BK20200601);中国博士后科学基金(2021M691293)
通讯作者: 洪皓飞,吴志猛     E-mail: haofei@jiangnan.edu.cn;zwu@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
鲍奕恺
洪皓飞
施杰
周志昉
吴志猛

引用本文:

鲍奕恺,洪皓飞,施杰,周志昉,吴志猛. 靶向PSMA多价纳米抗体的制备及其生物学活性表征*[J]. 中国生物工程杂志, 2022, 42(5): 37-45.

BAO Yi-kai,HONG Hao-fei,SHI Jie,ZHOU Zhi-fang,WU Zhi-meng. Development and Biological Activity Analysis of PSMA Specific Mutivalent Nanobodies. China Biotechnology, 2022, 42(5): 37-45.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2201019        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I5/37

图1  多价纳米抗体表达质粒的设计
图2  多价纳米抗体表达菌株的构建与鉴定
Primer name Primer sequence (5'→3') Endonuclease
F GGAATTCCATATGGGAAGATCTATGGAAGTGCAGCTGGTTGAAAGTG NdeⅠ, Bgl
R1 CCGCTCGAGCGGTTACGCGGATCCGCCGCCGCCGCTACCACCACCACCACTGCTCACGGTAACCTGG XhoⅠ, BamHⅠ
R2 CCGCTCGAGGCCACCGGTTTC Xho
22B CCCAGTAGTAGGTTGAGGC
T7ter GCTAGTTATTGCTCAGCGG
表1  本文所用引物
图3  多价纳米抗体的表达鉴定与产量分析
图4  多价纳米抗体的亲和能力评估
图5  多价纳米抗体的内吞能力评估
[1] Wild C P, Weiderpass E, Stewart B W. World cancer report:cancer research for cancer prevention. 2020 ed. Lyon: International Agency for Research on Cancer, 2020:2 8-33: 421-429.
[2] 邓通, 蔡林, 陈征, 等. 1990年与2017年中国前列腺癌疾病负担分析. 医学新知, 2020, 30(4): 252-259.
Deng T, Cai L, Chen Z, et al. Analysis of the burden of prostate cancer in China in 1990 and 2017. New Medicine, 2020, 30(4): 252-259.
[3] Liu X, Yu C, Bi Y, et al. Trends and age-period-cohort effect on incidence and mortality of prostate cancer from 1990 to 2017 in China. Public Health, 2019, 172: 70-80.
doi: S0033-3506(19)30140-4 pmid: 31220754
[4] Israeli R S, Powell C T, Fair W R, et al. Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Research, 1993, 53(2): 227-230.
pmid: 8417812
[5] Sokoloff R L, Norton K C, Gasior C L, et al. A dual-monoclonal sandwich assay for prostate-specific membrane antigen: levels in tissues, seminal fluid and urine. The Prostate, 2000, 43(2): 150-157.
doi: 10.1002/(SICI)1097-0045(20000501)43:2<150::AID-PROS10>3.0.CO;2-B
[6] Bostwick D G, Pacelli A, Blute M, et al. Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma. Cancer, 1998, 82(11): 2256-2261.
pmid: 9610707
[7] Silver D A, Pellicer I, Fair W R, et al. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clinical Cancer Research, 1997, 3(1): 81-85.
pmid: 9815541
[8] 刘冲, 陶嵘. 前列腺特异性膜抗原为靶标的放射免疫治疗进展. 肿瘤影像学, 2015, 24(3): 168-172.
Liu C, Tao R. Advances in radioimmunotherapy targeting prostate specific membrane antigen in prostate cancer. Oncoradiology, 2015, 24(3): 168-172.
[9] 焦点. PSMA在多种肿瘤中的表达分析及靶向PSMA的抗体偶联药物用于前列腺癌治疗的研究. 西安: 中国人民解放军空军军医大学, 2019.
Jiao D. Study of PSMA Expression in various tumors and treatment on prostate cancer using psma-based antibody-drug conjugate. Xian: Air Force Medical University of PLA, 2019.
[10] Ghosh A, Heston W D W. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. Journal of Cellular Biochemistry, 2004, 91(3): 528-539.
doi: 10.1002/jcb.10661
[11] Mir M A, Mehraj U, Sheikh B A, et al. Nanobodies: The "Magic Bullets" in therapeutics, drug delivery and diagnostics. Human Antibodies, 2020, 28(1): 29-51.
doi: 10.3233/HAB-190390
[12] 李丹, 黄鹤. 纳米抗体异源表达的研究进展. 中国生物工程杂志, 2017, 37(8): 84-95.
Li D, Huang H. Heterologous expression of nanobodies: a recent progress. China Biotechnology, 2017, 37(8): 84-95.
[13] Fan X Z, Wang L F, Guo Y L, et al. Ultrasonic nanobubbles carrying anti-PSMA nanobody: construction and application in prostate cancer-targeted imaging. PLoS One, 2015, 10(6): e0127419.
doi: 10.1371/journal.pone.0127419
[14] Chatalic K L S, Veldhoven-Zweistra J, de Ridder C M A, et al. SPECT/CT and PET imaging of prostate cancer xenografts using a novel anti-PSMA nanobody. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41: S319-S320.
[15] 范校周. 携载PSMA纳米抗体的超声纳米泡在靶向诊断前列腺癌中的实验研究. 重庆: 第三军医大学, 2014.
Fan X Z. Experimental study of ultrasound nanobubble coupled with anti-PSMA nanobody in the targeting diagnosis of prostate cancer. Chongqing: Third Military Medical University, 2014.
[16] Rahbarizadeh F, Ahmadvand D, Sharifzadeh Z. Nanobody;an old concept and new vehicle for immunotargeting. Immunological Investigations, 2011, 40(3): 299-338.
doi: 10.3109/08820139.2010.542228 pmid: 21244216
[17] 王长江, 曲光刚, 武曰星, 等. 猪圆环病毒2型Cap蛋白特异性双价纳米抗体原核表达及活性鉴定. 动物医学进展, 2021, 42(3): 7-11.
Wang C J, Qu G G, Wu Y X, et al. Expression and activity identification of mono-specific anti-PCV 2 cap bivalent nanobody. Progress in Veterinary Medicine, 2021, 42(3): 7-11.
[18] 张俊毅. 赭曲霉毒素A五价纳米抗体的表达及其免疫亲和柱的制备. 南昌: 南昌大学, 2018.
Zhang J Y. Expression of ochratoxin A pentavalent nanobody and preparation of immunoaffinity column. Nanchang: Nanchang University, 2018.
[19] Chatalic K L S, Veldhoven-Zweistra J, Bolkestein M, et al. A novel 111In-labeled anti-prostate-specific membrane antigen nanobody for targeted SPECT/CT imaging of prostate cancer. Journal of Nuclear Medicine, 2015, 56(7): 1094-1099.
doi: 10.2967/jnumed.115.156729
[20] Goldman E R, Broussard A, Anderson G P, et al. Bglbrick strategy for the construction of single domain antibody fusions. Heliyon, 2017, 3(12): e00474.
doi: 10.1016/j.heliyon.2017.e00474
[21] Sodee D B, Ellis R J, Samuels M A, et al. Prostate cancer and prostate bed SPECT imaging with ProstaScint: semiquantitative correlation with prostatic biopsy results. The Prostate, 1998, 37(3): 140-148.
doi: 10.1002/(SICI)1097-0045(19981101)37:3<140::AID-PROS3>3.0.CO;2-Q
[22] Hennrich U, Eder M. [(68) Ga]Ga-PSMA-11: the first FDA-approved 68 Ga-radiopharmaceutical for PET imaging of prostate cancer. Pharmaceuticals (Basel, Switzerland), 2021, 14(8): 713.
[23] Rosar F, Hau F, Bartholomä M, et al. Molecular imaging and biochemical response assessment after a single cycle of [(225) Ac]Ac-PSMA-617/[(177) Lu] Lu-PSMA-617 tandem therapy in mCRPC patients who have progressed on [(177)Lu] Lu-PSMA-617 monotherapy. Theranostics, 2021, 11(9): 4050-4060.
doi: 10.7150/thno.56211
[24] Cimadamore A, Mazzucchelli R, Lopez-Beltran A, et al. Prostate cancer in 2021: novelties in prognostic and therapeutic biomarker evaluation. Cancers, 2021, 13(14): 3471.
doi: 10.3390/cancers13143471
[25] Miyahira A K, Soule H R. The 24th Annual Prostate Cancer Foundation scientific retreat report. The Prostate, 2018, 78(12): 867-878.
[26] Giraudet A L, Kryza D, Hofman M, et al. PSMA targeting in metastatic castration-resistant prostate cancer: where are we and where are we going? Therapeutic Advances in Medical Oncology, 2021, 13: 17588359211053898.
[27] 穆博帅, 徐洋, 刘志博. 靶向PSMA放射性小分子药物研究进展. 同位素, 2021, 34(6): 565-580.
Mu B S, Xu Y, Liu Z B. Research progress of PSMA-targeted small molecule drugs. Journal of Isotopes, 2021, 34(6): 565-580.
[28] Hosseindokht M, Bakherad H, Zare H. Nanobodies: a tool to open new horizons in diagnosis and treatment of prostate cancer. Cancer Cell International, 2021, 21(1): 580.
doi: 10.1186/s12935-021-02285-0 pmid: 34717636
[29] Tykvart J, Navrátil V, Sedlák F, et al. Comparative analysis of monoclonal antibodies against prostate-specific membrane antigen (PSMA). The Prostate, 2014, 74(16): 1674-1690.
doi: 10.1002/pros.22887
[30] Nováková Z, Foss C A, Copeland B T, et al. Novel monoclonal antibodies recognizing human prostate-specific membrane antigen (PSMA) as research and theranostic tools. The Prostate, 2017, 77(7): 749-764.
doi: 10.1002/pros.23311
[31] Schülke N, Varlamova O A, Donovan G P, et al. The homodimer of prostate-specific membrane antigen is a functional target for cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(22): 12590-12595.
[1] 张赛,叶纪伟,沈远径,穆克飞,郭新武. miR-324-3p靶向GPX4对前列腺癌细胞铁死亡的影响*[J]. 中国生物工程杂志, 2022, 42(1/2): 72-79.
[2] 潘卫兵,朱鹏,曾启昂,王凯,刘松. 5例前列腺癌T细胞受体β链CDR3的多样性分析 *[J]. 中国生物工程杂志, 2019, 39(3): 7-12.
[3] 段李梅,杨锦潇,刘佳渝,郑永波,吴小候,罗春丽. shPLCε通过YAP抑制前列腺癌细胞的丝氨酸/甘氨酸代谢和增殖 *[J]. 中国生物工程杂志, 2019, 39(11): 1-12.
[4] 盛彬, 杨帆, 孙心旖, 陈瑶, 李莉, 杨建一, 杜圣家, 刘铭. GPRC6A过表达前列腺癌细胞株构建及EMT相关研究[J]. 中国生物工程杂志, 2017, 37(3): 18-26.
[5] 曹荣月, 俞敏霞, 张昕黎, 李曼曼, 苗梓韬, 金亮. VEGFⅡ/GRP融合蛋白的构建、表达、纯化及其抗小鼠RM-1前列腺癌的作用研究[J]. 中国生物工程杂志, 2016, 36(8): 9-15.
[6] 陈娥, 欧俐苹, 唐敏, 刘南京, 吴小候, 罗春丽. 帕比司他逆转前列腺癌细胞hepaCAM基因表达机制研究[J]. 中国生物工程杂志, 2016, 36(6): 9-17.
[7] 万里川, 周建光, 李杰之, 孙玉龙, 刘春丽. 小鼠PC-1蛋白兔多克隆抗体的制备及初步应用[J]. 中国生物工程杂志, 2003, 23(12): 95-98.
[8] 刘建香, 刘丽, 刘立忠, 王颖, 谢宝树, 冷爱军, 苏旭, 刘树铮. PSP94融合蛋白在大肠杆菌中的表达及其抗前列腺癌活性分析[J]. 中国生物工程杂志, 2000, 20(1): 8-12.
[9] 睿中. Cetus公司推出两项诊断试验[J]. 中国生物工程杂志, 1986, 6(3): 73-73.