Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (4): 17-23    DOI: 10.13523/j.cb.2110009
技术与方法     
基于单个B细胞抗体基因扩增技术筛选马IgG1单克隆抗体*
陈阳1**,刘彤1**,张佳琦2,廖化新1,林跃智2,王晓钧2,***(),王亚玉1,***()
1 暨南大学生命科学技术学院 广州 5106321
2 中国农业科学院哈尔滨兽医研究所 兽医生物技术国家重点实验室/马传染病和慢病毒病研究创新团队 哈尔滨 150069
Screening of Monoclonal Antibodies Targeting the Equine IgG1 Based on Single B Cell Antibodies Gene Amplification Technology
CHEN Yang1,LIU Tong1,ZHANG Jia-qi2,LIAO Hua-xin1,LIN Yue-zhi2,WANG Xiao-jun2,***(),WANG Ya-yu1,***()
1 Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 5106321, China
2 State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute,the Chinese Academy of Agricultural Sciences, Harbin 150069, China
 全文: PDF(3217 KB)   HTML
摘要:

在马的免疫学研究领域中,由于目前市场上缺乏商业化的马IgG单克隆抗体,使得对马的B细胞研究受到很大阻碍,IgG是B细胞受体(BCR)的重要构成成分,与B细胞分化成熟相关。为了获得马IgG特异性单克隆抗体,利用单个B细胞扩增技术进行抗体筛选。首先,将马IgG蛋白(EqIgG1-C)密码子优化后合成到真核表达载体pcDNA3.4上,纯化出抗原蛋白。随后,使用蛋白质免疫小鼠,分离脾细胞后利用流式细胞术分离特异性单个B细胞,扩增出抗体重链和轻链的可变区基因,用overlapping PCR方法扩增出线性化的完整抗体,并进行鉴定。结果从80个B细胞中获得了27株特异性重组单克隆抗体,并挑选出3株线性结合活性最强的抗体基因构建到表达载体上,共转染Expi293FTM细胞后表达纯化,经过ELISA和Western blot验证,显示获得的抗体可以和EqIgG1-C蛋白有良好的结合作用。使用该方法可以省时高效的获得特异性抗体,为马的免疫学研究提供了重要研究工具,为鼠单克隆抗体筛选提供了技术拓展。

关键词: 马IgG单个B细胞PCR抗体筛选技术单克隆抗体    
Abstract:

In the field of equine immunology, research on equine B lymphocytes has been greatly hampered by the lack of commercial monoclonal antibodies of IgG. IgG is an important component of B cell receptor (BCR), which is associated with the differentiation and maturation of B cells. In order to obtain specific monoclonal antibodies of equine IgG, single B lymphocyte amplification was used to screen the antibodies. Firstly, the codon of equine IgG protein (EqIgG1-C) was optimized and synthesized on eukaryotic expression vector pcDNA3.4, and the antigenic protein was purified. Subsequently, the mice were immunized with the protein, and after the spleen cells were separated, the specific single B lymphocyte was separated by flow cytometry. The variable region genes of heavy and light chain of antibody were amplified by overlapping PCR method, and the complete antibody was identified. Finally, 27 strains of specific recombinant monoclonal antibodies were obtained from 80 B cells, and 3 strains with the strongest linear binding activity were selected and constructed into expression vector. After co-transfection of Expi293FTM cells, antibodies were expressed and purified. Verified by ELISA and Western blot, the results showed that the antibodies has extraordinary binding activity to EqIgG1-C protein. Using this method can save time and obtain specific antibodies efficiently, which provides an important research tool for the study of equine immunology.

Key words: Equine IgG    Single B cell PCR    Antibody screening technology    Monoclonal antibody
收稿日期: 2021-10-09 出版日期: 2022-05-05
ZTFLH:  Q816  
基金资助: * 兽医生物技术国家重点实验室开放课题基金(SKLVBF2017)
通讯作者: 王晓钧,王亚玉     E-mail: wangxiaojun@caas.cn;wangyayu1987@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈阳
刘彤
张佳琦
廖化新
林跃智
王晓钧
王亚玉

引用本文:

陈阳, 刘彤, 张佳琦, 廖化新, 林跃智, 王晓钧, 王亚玉. 基于单个B细胞抗体基因扩增技术筛选马IgG1单克隆抗体*[J]. 中国生物工程杂志, 2022, 42(4): 17-23.

CHEN Yang, LIU Tong, ZHANG Jia-qi, LIAO Hua-xin, LIN Yue-zhi, WANG Xiao-jun, WANG Ya-yu. Screening of Monoclonal Antibodies Targeting the Equine IgG1 Based on Single B Cell Antibodies Gene Amplification Technology. China Biotechnology, 2022, 42(4): 17-23.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2110009        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I4/17

图1  单个B细胞抗体筛选平台技术原理
图2  免疫原蛋白表达载体构建策略
图3  EqIgG1-C蛋白表达鉴定
图4  免疫小鼠的抗体表达水平检测
图5  流式细胞仪分选EqIgG1-C蛋白特异性记忆B细胞
图6  抗体可变区重链(a)/轻链(b)PCR扩增
图7  IgG1-C特异性单克隆抗体的表达与鉴定
[1] 李克斌. 2017年生效的世界动物卫生组织疫病感染及侵染名录. 兽医导刊, 2017(3): 53-56.
Li K B. OIE-Listed dseases, infections and Infestations in 2017. Veterinary Orientation, 2017(3): 53-56.
[2] Torres R M, Flaswinkel H, Reth M, et al. Aberrant B cell development and immune response in mice with a compromised BCR complex. Science, 1996, 272(5269): 1804-1808.
pmid: 8650582
[3] Good-Jacobson K L, Shlomchik M J. Plasticity and heterogeneity in the generation of memory B cells and long-lived plasma cells: the influence of germinal center interactions and dynamics. Journal of Immunology (Baltimore, Md: 1950), 2010, 185(6): 3117-3125.
doi: 10.4049/jimmunol.1001155
[4] Mcheyzer-Williams L J, Mcheyzer-Williams M G. Antigen-specific memory B cell development. Annual Review of Immunology, 2005, 23: 487-513.
doi: 10.1146/annurev.immunol.23.021704.115732
[5] Lewis M J, Wagner B, Woof J M. The different effector function capabilities of the seven equine IgG subclasses have implications for vaccine strategies. Molecular Immunology, 2008, 45(3): 818-827.
doi: 10.1016/j.molimm.2007.06.158
[6] Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 1975, 256 (5517): 495-497.
doi: 10.1038/256495a0
[7] Bradbury A R M, Sidhu S, Dübel S, et al. Beyond natural antibodies: the power of in vitro display technologies. Nature Biotechnology, 2011, 29 (3): 245-254.
doi: 10.1038/nbt.1791 pmid: 21390033
[8] Hoogenboom H R. Selecting and screening recombinant antibody libraries. Nature Biotechnology, 2005, 23(9): 1105-1116.
pmid: 16151404
[9] Liao H X, Levesque M C, Nagel A, et al. High-throughput isolation of immunoglobulin genes from single human B cells and expression as monoclonal antibodies. Journal of Virological Methods, 2009, 158(1-2): 171-179.
doi: 10.1016/j.jviromet.2009.02.014
[10] Liao H X, Lynch R, Zhou T, et al. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature, 2013, 496 (7446): 469-476.
doi: 10.1038/nature12053
[11] Cao Y L, Su B, Guo X H, et al. Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients B cells. Cell, 2020, 182(1): 73-84.e16.
doi: 10.1016/j.cell.2020.05.025
[12] Whittle J R R, Wheatley A K, Wu L, et al. Flow cytometry reveals that H5N1 vaccination elicits cross-reactive stem-directed antibodies from multiple Ig heavy-chain lineages. Journal of Virology, 2014, 88(8): 4047-4057.
doi: 10.1128/JVI.03422-13 pmid: 24501410
[13] Glukhova X A, Prusakova O V, Trizna J A, et al. Updates on the production of therapeutic antibodies using human hybridoma technique. Current Pharmaceutical Design, 2016, 22(7): 870-878.
pmid: 26696411
[14] Xu P, Ghosh S, Gul A R, et al. Screening of specific binding peptides using phage-display techniques and their biosensing applications. TrAC Trends in Analytical Chemistry, 2021, 137: 116229.
doi: 10.1016/j.trac.2021.116229
[1] 李开通,刘金青,蔡望伟,肖曼,沈倍奋,王晶,冯健男. 靶向人白介素-6蛋白的治疗性单克隆抗体研究进展*[J]. 中国生物工程杂志, 2022, 42(4): 58-67.
[2] 赵妍淑,张金华,宋浩. 工程原核生物和酵母菌中生产单克隆抗体和抗体片段研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 74-83.
[3] 王猛,宋慧茹,程雨洁,王毅,杨波,胡征. 以核糖体蛋白L7/L12为分子标志物精准检测肺炎链球菌的研究 *[J]. 中国生物工程杂志, 2020, 40(4): 34-41.
[4] 孔建涛,庄英萍,郭美锦. 基于DOE设计和氨基酸补加策略提高CHO细胞表达抗CD20单克隆抗体*[J]. 中国生物工程杂志, 2020, 40(12): 41-48.
[5] 吝建华,韩君,徐寒梅. PD-1/PD-L1免疫检查点抗体药物制剂稳定性开发[J]. 中国生物工程杂志, 2020, 40(10): 35-42.
[6] 江一帆,贾宇,王龙,王志明. 细胞培养过程对单克隆抗体糖基化修饰的影响和调控[J]. 中国生物工程杂志, 2019, 39(8): 95-103.
[7] 高倩,江洪,叶茂,郭文娟. 全球单克隆抗体药物研发现状及发展趋势 *[J]. 中国生物工程杂志, 2019, 39(3): 111-119.
[8] 刘国芳,刘晓志,高健,王志明. 宿主细胞残留蛋白质对单克隆抗体药物质量影响及其质量控制 *[J]. 中国生物工程杂志, 2019, 39(10): 105-110.
[9] 徐婧雯,张雪梅,吴忠香,朱文兵,蒋曦,巩蔚,严丽蔚,宋杰,李慧,董少忠. 抗树鼩CD3ε单克隆抗体的制备及生物学特性鉴定[J]. 中国生物工程杂志, 2018, 38(4): 54-62.
[10] 任建委,李军,李尚泽. 人源CT55蛋白原核表达及单克隆抗体的制备 *[J]. 中国生物工程杂志, 2018, 38(11): 1-8.
[11] 毛开云,范月蕾,王恒哲,王跃,陈大明. 全球PD-1/PD-L1单克隆抗体市场竞争格局 *[J]. 中国生物工程杂志, 2018, 38(11): 103-115.
[12] 孙静静,周伟伟,周雷鸣,赵巧辉,李桂林. 杂交瘤细胞体外大规模培养研究进展[J]. 中国生物工程杂志, 2018, 38(10): 82-89.
[13] 王云龙, 赵二霞, 李玉林. Thymidine Kinase 1(TK1)重组蛋白的表达、纯化及鉴定[J]. 中国生物工程杂志, 2017, 37(9): 15-22.
[14] 李敏, 吴日伟. 国内外单抗药物市场概述[J]. 中国生物工程杂志, 2017, 37(3): 106-114.
[15] 邓义熹, 李继东, 李乐, 蒙国基, 于玉根. 添加SNS能显著提高CHT填料使用寿命的研究[J]. 中国生物工程杂志, 2017, 37(1): 81-88.