Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (7): 42-49    DOI: 10.13523/j.cb.2103034
技术与方法     
噬菌体Qβ病毒样颗粒的制备、纯化及鉴定
陈修月,周文锋,何庆,苏冰,邹亚文()
湖南农业大学动物医学院 兽用蛋白质工程疫苗湖南省重点实验室兽用疫苗逆向创制湖南省工程研究中心 长沙 410128
Preparation, Purification and Identification of Bacteriophage Qβ Virus-like Particles
CHEN Xiu-yue,ZHOU Wen-feng,HE Qing,SU Bing,ZOU Ya-wen()
College of Veterinary Medicine, Hunan Agricultural University, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research & Development Center for Animal Reverse Vaccinology of Hunan Province, Changsha 410128, China
 全文: PDF(1869 KB)   HTML
摘要:

目的: 利用大肠杆菌原核表达系统制备噬菌体Qβ VLPs,验证其自组装能力,纯化后免疫动物以确定其免疫原性,同时制备兔多克隆抗体验证其在哺乳动物细胞中内化能力。方法: 合成pET-28-Qβ-CP质粒,利用大肠杆菌原核表达系统制备Qβ VLPs,通过蔗糖密度梯度离心纯化VLPs,将经凝胶层析柱Sephacryl S-400纯化的Qβ VLPs用透射电镜观察颗粒形态;纯化后的Qβ VLPs加入或不加入佐剂分别免疫新西兰兔,获得血清后用Protein G纯化得到兔多克隆抗体,通过Western blot确定制备的兔多克隆抗体特异性,并利用间接免疫荧光法对Qβ VLPs的细胞内化能力进行鉴定。结果: 制备并获得纯度较高的Qβ VLPs,通过透射电镜观察到大量直径约为28 nm的颗粒;Western blot结果表明制备的兔多克隆抗体能特异性识别Qβ VLPs,且在免疫实验中加入佐剂与不加入佐剂分别免疫动物,对抗体水平的影响不显著。间接免疫荧光法结果表明Qβ VLPs在哺乳动物细胞中具有内化能力。结论: 成功制备Qβ VLPs为后续研发以噬菌体Qβ VLPs为载体的相关疫苗奠定基础。

关键词: 噬菌体Qβ病毒样颗粒多克隆抗体细胞内化    
Abstract:

Objective: The self-assembly ability of phage Qβ virus-like particles (VLPs),prepared by Escherichia coli (E. coli) prokaryotic expression system was verified. To determine their immunogenicity, New Zealand rabbits were immunized with purified Qβ VLPs, and them ability to enter mammalian cells was also detected.Methods: The pET-28-Qβ-CP plasmid was constructed, and Qβ VLPs were produced by E. coli expression system. Qβ VLPs were purified by sucrose density gradient centrifugation and gel filtration (Sephacryl S-400 column). The particle morphology of Qβ VLPs were observed by transmission electron microscopy (TEM). Antisera were obtained from the rabbits immunized with the VLPs, along with or without adjuvant, and subsequently, antibodies were purified by Protein G resin. The specificity was determined by Western blot. The indirect immunofluorescence assay (IFA) was used to detect the entry of Qβ VLPs into cells.Results: High purity Qβ VLPs were obtained. TEM results showed that substantial VLPs were observed with diameter of about 28 nm. Western blot showed that Qβ VLPs were specifically recognized by anti-rabbit polyclonal antibodies. Adjuvant had no negative effect on the production of antibody. Based on IFA, the results showed that Qβ VLPs entered various mammalian cells.Conclusion: Qβ VLPs were successfully produced in this study, and they would have great potential as carriers to facilitate the development of future vaccine based on Qβ VLPs.

Key words: Bacteriophage Qβ    Virus-like particles    Polyclonal antibody    Cell entry
收稿日期: 2021-03-15 出版日期: 2021-08-03
ZTFLH:  Q819  
通讯作者: 邹亚文     E-mail: yawenzou@stu.hunau.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈修月
周文锋
何庆
苏冰
邹亚文

引用本文:

陈修月,周文锋,何庆,苏冰,邹亚文. 噬菌体Qβ病毒样颗粒的制备、纯化及鉴定[J]. 中国生物工程杂志, 2021, 41(7): 42-49.

CHEN Xiu-yue,ZHOU Wen-feng,HE Qing,SU Bing,ZOU Ya-wen. Preparation, Purification and Identification of Bacteriophage Qβ Virus-like Particles. China Biotechnology, 2021, 41(7): 42-49.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2103034        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I7/42

图1  Qβ外壳蛋白的可溶性分析
图2  Qβ VLPs的纯化结果
图3  Qβ VLPs经Sephacryl S-400分子筛凝胶层析
图4  Qβ VLPs的透射电镜形态
图5  兔多克隆抗体的Western blot分析
图6  间接免疫荧光结果
[1] Inomata T, Kimura H, Hayasaka H, et al. Quantitative comparison of the RNA bacteriophage Qβ infection cycle in rich and minimal media. Archives of Virology, 2012, 157(11):2163-2169.
doi: 10.1007/s00705-012-1419-3
[2] Furuse K, Osawa S, Kawashiro J, et al. Bacteriophage distribution in human faeces: continuous survey of healthy subjects and patients with internal and leukaemic diseases. The Journal of General Virology, 1983, 64(Pt 9):2039-2043.
doi: 10.1099/0022-1317-64-9-2039
[3] Rumnieks J, Tars K. Crystal structure of the read-through domain from bacteriophage Qβ A1 protein. Protein Science, 2011, 20(10):1707-1712.
doi: 10.1002/pro.704
[4] Tao P, Zhu J G, Mahalingam M, et al. Bacteriophage T4 nanoparticles for vaccine delivery against infectious diseases. Advanced Drug Delivery Reviews, 2019, 145:57-72.
doi: 10.1016/j.addr.2018.06.025
[5] Brown F, Cartwright B. Dissociation of foot-and-mouth disease virus into its nucleic acid and protein components. Nature, 1961, 192:1163-1164.
doi: 10.1038/1921163a0
[6] Blumenthal T, Carmichael G G. RNA replication: function and structure of Qbeta-replicase. Annual Review of Biochemistry, 1979, 48:525-548.
pmid: 382992
[7] Rumnieks J, Tars K. Crystal structure of the maturation protein from bacteriophage Qβ. Journal of Molecular Biology, 2017, 429(5):688-696.
doi: S0022-2836(17)30040-2 pmid: 28111107
[8] Kushnir N, Streatfield S J, Yusibov V. Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine, 2012, 31(1):58-83.
doi: 10.1016/j.vaccine.2012.10.083
[9] Chackerian B, Lenz P, Lowy D R, et al. Determinants of autoantibody induction by conjugated papillomavirus virus-like particles. Journal of Immunology, 2002, 169(11):6120-6126.
pmid: 12444114
[10] Jegerlehner A, Storni T, Lipowsky G, et al. Regulation of IgG antibody responses by epitope density and CD21-mediated costimulation. European Journal of Immunology, 2002, 32(11):3305-3314.
pmid: 12555676
[11] Henry K A, Arbabi-Ghahroudi M, Scott J K. Beyond phage display: non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold. Frontiers in Microbiology, 2015, 6:755.
[12] Prisco A, De Berardinis P. Filamentous bacteriophage fd as an antigen delivery system in vaccination. International Journal of Molecular Sciences, 2012, 13(4):5179-5194.
doi: 10.3390/ijms13045179
[13] Beghetto E, Gargano N. Lambda-display: a powerful tool for antigen discovery. Molecules, 2011, 16(4):3089-3105.
doi: 10.3390/molecules16043089 pmid: 21490557
[14] Jafari N, Abediankenari S. Phage particles as vaccine delivery vehicles: concepts, applications and prospects. Asian Pacific Journal of Cancer Prevention, 2015, 16(18):8019-8029.
doi: 10.7314/APJCP.2015.16.18.8019
[15] Fu Y, Li J M. A novel delivery platform based on Bacteriophage MS2 virus-like particles. Virus Research, 2016, 211:9-16.
doi: 10.1016/j.virusres.2015.08.022
[16] Pokorski J K, Hovlid M L, Finn M G. Cell targeting with hybrid Qβ virus-like particles displaying epidermal growth factor. Chembiochem: A European Journal of Chemical Biology, 2011, 12(16):2441-2447.
doi: 10.1002/cbic.v12.16
[17] Jepson C D, March J B. Bacteriophage lambda is a highly stable DNA vaccine delivery vehicle. Vaccine, 2004, 22(19):2413-2419.
doi: 10.1016/j.vaccine.2003.11.065
[18] Lankes H A, Zanghi C N, Santos K, et al. In vivo gene delivery and expression by bacteriophage lambda vectors. Journal of Applied Microbiology, 2007, 102(5):1337-1349.
pmid: 17448169
[19] Bao Q, Li X, Han G R, et al. Phage-based vaccines. Advanced Drug Delivery Reviews, 2019, 145:40-56.
doi: 10.1016/j.addr.2018.12.013
[20] Huang X F, Wang X, Zhang J, et al. Escherichia coli-derived virus-like particles in vaccine development. NPJ Vaccines, 2017, 2:3.
doi: 10.1038/s41541-017-0006-8
[21] Zeltins A. Construction and characterization of virus-like particles: a review. Molecular Biotechnology, 2013, 53(1):92-107.
doi: 10.1007/s12033-012-9598-4 pmid: 23001867
[22] Gatto D, Ruedl C, Odermatt B, et al. Rapid response of marginal zone B cells to viral particles. Journal of Immunology, 2004, 173(7):4308-4316.
doi: 10.4049/jimmunol.173.7.4308
[23] Gatto D, Martin S W, Bessa J, et al. Regulation of memory antibody levels: the role of persisting antigen versus plasma cell life span. Journal of Immunology, 2007, 178(1):67-76.
doi: 10.4049/jimmunol.178.1.67
[24] Jegerlehner A, Maurer P, Bessa J, et al. TLR9 signaling in B cells determines class switch recombination to lgG2a. Journal of Immunology, 2007, 178(4):2415-2420.
pmid: 17277148
[25] Hou B D, Saudan P, Ott G, et al. Selective utilization of Toll-like receptor and MyD88 signaling in B cells for enhancement of the antiviral germinal center response. Immunity, 2011, 34(3):375-384.
doi: 10.1016/j.immuni.2011.01.011
[26] Maurer P, Jennings G T, Willers J, et al. A therapeutic vaccine for nicotine dependence: preclinical efficacy, and phase I safety and immunogenicity. European Journal of Immunology, 2005, 35(7):2031-2040.
doi: 10.1002/(ISSN)1521-4141
[27] Bachmann M F, Jennings G T. Therapeutic vaccines for chronic diseases: successes and technical challenges. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2011, 366(1579):2815-2822.
[28] Doucet M, El-Turabi A, Zabel F, et al. Preclinical development of a vaccine against oligomeric alpha-synuclein based on virus-like particles. PLoS One, 2017, 12(8):e0181844.
doi: 10.1371/journal.pone.0181844
[29] Chan S K, Du P Y, Ignacio C, et al. Biomimetic virus-like particles as severe acute respiratory syndrome coronavirus 2 diagnostic tools. ACS Nano, 2021, 15(1):1259-1272.
doi: 10.1021/acsnano.0c08430
[30] Liao W H, Hua Z L, Liu C, et al. Characterization of T-dependent and T-independent B cell responses to a virus-like particle. Journal of Immunology, 2017, 198(10):3846-3856.
doi: 10.4049/jimmunol.1601852
[31] Yao L, Li F L, Qu M, et al. Development and evaluation of a novel armored RNA technology using bacteriophage Qβ. Food and Environmental Virology, 2019, 11(4):383-392.
doi: 10.1007/s12560-019-09400-5
[32] Rhee J K, Hovlid M, Fiedler J D, et al. Colorful virus-like particles: fluorescent protein packaging by the Qβ capsid. Biomacromolecules, 2011, 12(11):3977-3981.
doi: 10.1021/bm200983k
[1] 谢航航,白红妹,叶超,陈永俊,袁明翠,马雁冰. 易发生聚集的重组HBcAg病毒样颗粒的纯化*[J]. 中国生物工程杂志, 2020, 40(5): 40-47.
[2] 陈秋利,杨丽超,李辉,温莎,李刚,何敏. 人Nek2蛋白原核表达纯化及其多克隆抗体制备 *[J]. 中国生物工程杂志, 2020, 40(3): 31-37.
[3] 王国强,于茵茵,曾华辉,王旭东,吴玉彬,尚立芝,李玉林,张怡青,张西西,张振强,王云龙. 基于MS2噬菌体病毒样颗粒的RT-PCR检测新型冠状病毒(SARS-CoV-2)质控品制备*[J]. 中国生物工程杂志, 2020, 40(12): 31-40.
[4] 王彦伟,李鹏昊,梁严予,关洋,逄文强,田克恭. 猪圆环病毒2型病毒样颗粒的高效组装技术研究*[J]. 中国生物工程杂志, 2020, 40(11): 35-42.
[5] 白红妹,黄惟巍,刘存宝,孙文佳,杨旭,马雁冰. 共表达构建呈现人白细胞介素-13抗原肽的Qβ噬菌体病毒样颗粒 *[J]. 中国生物工程杂志, 2018, 38(5): 66-72.
[6] 秦瑞坪, 李玲霞, 马晓玲, 席欧彦, 赵婷, 邱玲玲, 李江伟. 抗人卵泡刺激素受体多克隆抗体的制备及其对实验大鼠骨质疏松的抑制作用[J]. 中国生物工程杂志, 2017, 37(6): 9-16.
[7] 孙文佳, 姚宇峰, 杨旭, 黄惟巍, 刘存宝, 龙琼, 褚晓杰, 马雁冰. 乙肝核心抗原病毒样颗粒呈现HPV 16L1抗原表位及特异抗体诱导[J]. 中国生物工程杂志, 2017, 37(3): 58-64.
[8] 刘雁霞, 樊振川. 莱茵衣藻LZTFL1蛋白的多克隆抗体制备及应用[J]. 中国生物工程杂志, 2017, 37(11): 109-115.
[9] 杨思源, 潘敬梅, 王硕, 邓开轩, 邓强, 黄新河, 李学如. 化脓性链球菌溶血素O活性结构重组蛋白的制备[J]. 中国生物工程杂志, 2016, 36(6): 51-56.
[10] 陈晓峰, 胡盼, 李岩松, 郭兴, 邹德颖, 刘楠楠, 卢士英, 周玉, 柳增善, 李兆辉, 任洪林. 小鼠Peroxiredoxin 6基因克隆、原核表达及多克隆抗体的制备[J]. 中国生物工程杂志, 2016, 36(3): 11-16.
[11] 孙鹏艳, 黎奎, 刘存宝, 姚宇峰, 褚晓杰, 白红妹, 杨旭, 黄惟巍, 孙文佳, 马雁冰. 埃博拉病毒GP和VP40蛋白在哺乳动物细胞中的共表达及病毒样颗粒装配[J]. 中国生物工程杂志, 2016, 36(12): 66-71.
[12] 廖何斌, 刘马峰, 程安春. 鸭疫里默氏杆菌RecA作为一种内参蛋白的评价[J]. 中国生物工程杂志, 2015, 35(6): 26-31.
[13] 褚晓杰, 李杨, 龙琼, 姚宇峰, 孙文佳, 黄惟巍, 杨旭, 刘存宝, 马雁冰. 基于HPV16 E7蛋白CTLs抗原肽的病毒样颗粒治疗性疫苗的构建[J]. 中国生物工程杂志, 2015, 35(2): 45-51.
[14] 翟田甜, 马晓玲, 木亚沙尔·买买提拉洪, 李玲霞, 李江伟. 抗CD133胞外区骆驼多克隆抗体的制备及鉴定[J]. 中国生物工程杂志, 2014, 34(8): 24-28.
[15] 李骁, 刘留, 张磊, 周亚竟. 人源DNA聚合酶Pol δ小亚基p12的抗体制备及应用[J]. 中国生物工程杂志, 2012, 32(05): 12-18.