Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (10): 65-75    DOI: 10.13523/j.cb.2006048
综述     
甲醇的生物利用与转化*
孙青1,2,刘德华1,2,陈振1,2,**()
1 清华大学化学工程系 工业生物催化教育部重点实验室 北京 100084
2 清华大学合成与系统生物学中心 北京 100084
Research Progress of Methanol Utilization and Bioconversion
SUN Qing1,2,LIU De-hua1,2,CHEN Zhen1,2,**()
1 Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering,Tsinghua University, Beijing 100084, China
2 Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
 全文: PDF(22063 KB)   HTML
摘要:

甲醇作为一种来源广泛、价格低廉、还原度高的非粮原料有望成为下一代生物制造的关键原料。利用合成生物学技术构建能够高效利用甲醇的重组微生物以实现从甲醇到高值化学品的生物转化已成国内外研究热点,但由于甲醇代谢过程的特殊性及复杂性,目前人工设计的甲基营养菌还难以实现以甲醇为唯一碳源进行生长及产物合成。基于对天然甲基营养菌甲醇代谢过程的分析,从甲醇脱氢酶的筛选与改造、甲醛同化途径的重构与优化、甲醇到化学品的生物转化几个方面对合成型甲基营养菌的构建策略及面临的挑战进行总结与分析,以期为今后合成型甲基营养菌的人工设计和利用提供一定的借鉴。

关键词: 甲醇合成型甲基营养菌甲醇脱氢酶甲醛同化途径生物转化合成生物学    
Abstract:

Methanol is an abundant raw material with low price and high reduction degree, which is expected to be a promising feedstock for the next generation biomanufacturing. To convert methanol into value-added chemicals, constructing recombinant microorganisms using synthetic biology has received broad attention in recent years. However, due to the complex regulation of methanol metabolism, the current engineered synthetic methylotrophy still cannot use methanol as the sole carbon source for growth and chemical production. Based on the analysis of methanol metabolic mechanism in natural methylotrophy, this review summarized the main challenges for designing and constructing synthetic methylotrophy and proposed potential strategies to overcome these barriers. Especially, it focused on the following aspects, including: screening and engineering methanol dehydrogenase; optimizing and balancing formaldehyde assimilation pathways; bioconversion of methanol to chemicals.

Key words: Methanol    Methylotrophy    Methanol dehydrogenase    Formaldehyde assimilation    Bioconversion    Synthetic biology
收稿日期: 2020-06-24 出版日期: 2020-11-10
ZTFLH:  Q819  
基金资助: * 国家重点研发计划(2018YFA0901500)
通讯作者: 陈振     E-mail: zhenchen2013@mail.tsinghua.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孙青
刘德华
陈振

引用本文:

孙青,刘德华,陈振. 甲醇的生物利用与转化*[J]. 中国生物工程杂志, 2020, 40(10): 65-75.

SUN Qing,LIU De-hua,CHEN Zhen. Research Progress of Methanol Utilization and Bioconversion. China Biotechnology, 2020, 40(10): 65-75.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2006048        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I10/65

Name EC
number
Representative
microorganisms
Location Methanol redox
reaction
ΔG
(kJ/mol)
Energy
generation
PQQ-dependent
MDH
1.1.2.7 Methylophilus
methylotrophus,
Methylobacterium extorquens
Periplasm CH3OH+PQQ→
HCHO+PQQH2
-24.8 ATP
NAD-dependent
MDH
1.1.1.244 Bacillus methanolicus,
Bacillus stearothermophilus
Cytoplasm CH3OH+NAD?
HCHO+NADH+H+
34.2 NADH
O2-dependent
AOD
1.1.3.13 Pichia pastoris Peroxisome CH3OH+O2
HCHO+H2O2
-99.2 None
表1  不同甲醇脱氢酶的分类及比较
图1  甲醛同化路径图
Pathway Representative
microorganisms
Pathway stoichiometry Replenish
pathway
Key enzyme
RuMP Bacillus methanolicus,
Methylomonas methanolica
3HCHO+NAD++ADP→
Pyruvate+NADH+ATP (TA)
Non-oxidative
PPP
HPS, PHI
XuMP Pichia pastoris 3HCHO+NAD++ATP→
Pyruvate+NADH+ADP
Non-oxidative
PPP
AOD, DAS
Serine cycle Methylobacterium extorquens CO2+2HCHO+2NADH+2ATP→
Pyruvate+2NAD++2ADP+FPH2
EMC pathway SHMT
表2  甲醇同化途径的分类及比较
Substance
class
Product Titer 13C-labeled
carbon
Strain/Pathway/Genetic
modifications
Medium and carbon
source
Refs
C2 Ethanol 4.6g/L 43% E. coli/RuMP/ΔrpiAB, pdc, adhB
expressed
MOPS medium,
13C- methanol,xylose
[32]
Glycolate 1.2g/L - E. coli/Artificial 2-hydroxyacyl
CoA lyase (HACL) expressed
Designed minimal
medium, formaldehyde
[43]
C3 Acetone 45.0mmol/L 3.6% E. coli/RuMP/ΔfrmA, Δpgithl,
ctfAB, adc expressed
M9 minimal medium,
13C-methanol,
glucose, yeast extract
[41]
Pyruvate 0.26g/L Not proved S. cerevisiae/XuMP/aod, cat
expressed
Synthetic medium,
methanol
[44]
C4 1-Butanol 2.0g/L 71% E. coli/RuMP/ΔrpiAB, pdc, adhB
expressed
MOPS medium,
13C- methanol,xylose
[32]
Succinic acid 68.75g/L 1.45% E. coli/RuMP/based on
previously constructed succinic
acid producer
Chemically defined
medium, glucose,
citric acid, 13C-methanol
[40]
Amino
acids
L- Glutamate 90mg/L 63% C. glutamicum/RuMP/ΔfrmA,
ΔrpiB, Δald/aldH
CGXII minimal medium,
methanol, xylose
[45]
69g/L - B. methanolicus MGA3 MeOH200 medium, 50℃ [22]
L-Lysine 11g/L - B. methanolicus MGA3 MeOH200 medium, 50℃ [22]
Cadaverine 1.5g/L Max 15% C. glutamicum/RuMP/
Δald, ΔfadH
CGXII minimal medium,
13C- methanol, glucose/ribose
[39]
11.3g/L - B. methanolicus MeOH200 medium [46]
Others Naringenin 3.5mg/L 4.7% E. coli/RuMP/ΔfrmA M9 minimal medium,
13C-methanol, yeast extract,
p-coumaric acid
[14]
GABA 9g/L - B. methanolicus MGA3 MVcM minimal medium, methanol [37]
表3  天然和合成甲基营养菌在合成化学品中的应用
[1] Du X L, Jiang Z, Su D S, et al. Research progress on the indirect hydrogenation of carbon dioxide to methanol. ChemSusChem, 2016,9(4):322-332.
doi: 10.1002/cssc.201501013 pmid: 26692565
[2] Schendel F J, Bremmon C E, Flickinger M C, et al. L-lysine production at 50 degrees C by mutants of a newly isolated and characterized methylotrophic Bacillus sp. Applied and Environmental Microbiology, 1990,56(4):963-970.
doi: 10.1128/AEM.56.4.963-970.1990 pmid: 2111119
[3] Zhang W, Zhang T, Wu S, et al. Guidance for engineering of synthetic methylotrophy based on methanol metabolism in methylotrophy. RSC Advances, 2017,7(7):4083-4091.
[4] Whitaker W B, Sandoval N R, Bennett R K, et al. Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization. Current Opinion in Biotechnology, 2015,33:165-175.
doi: 10.1016/j.copbio.2015.01.007 pmid: 25796071
[5] Antoniewicz M R. Synthetic methylotrophy: strategies to assimilate methanol for growth and chemicals production. Current Opinion in Biotechnology, 2019,59:165-174.
doi: 10.1016/j.copbio.2019.07.001 pmid: 31437746
[6] Krog A, Heggeset T M, Müller J E, et al. Methylotrophic Bacillus methanolicus encodes two chromosomal and one plasmid born NAD+ dependent methanol dehydrogenase paralogs with different catalytic and biochemical properties. PLoS One, 2013,8(3):e59188.
doi: 10.1371/journal.pone.0059188 pmid: 23527128
[7] Anthony C, Williams P A. The structure and mechanism of methanol dehydrogenase. Biochimica et Biophysica Acta, 2003,1647(1):18-23.
[8] Zhang M, Lidstrom M E. Promoters and transcripts for genes involved in methanol oxidation in Methylobacterium extorquens AM1. Microbiology, 2003,149(4):1033-1040.
doi: 10.1099/mic.0.26105-0
[9] Bennett R K, Steinberg L M, Chen W. et al. Engineering the bioconversion of methane and methanol to fuels and chemicals in native and synthetic methylotrophs. Current Opinion in Biotechnology, 2018,50:81-93.
doi: 10.1016/j.copbio.2017.11.010 pmid: 29216497
[10] Limtong S, Srisuk N, Yongmanitchai W, et al. Ogataea chonburiensis sp. nov. and Ogataea nakhonphanomensis sp. nov., thermotolerant, methylotrophic yeast species isolated in Thailand, and transfer of Pichia siamensis and Pichia thermomethanolica to the genus Ogataea. International Journal of Systematic and Evolutionary Microbiology, 2008,58(1):302-307.
[11] Sheehan M C, Bailey C J, Dowds B C, et al. A new alcohol dehydrogenase, reactive towards methanol, from Bacillus stearothermophilus. Biochemical Journal, 1988,252(3):661-666.
doi: 10.1042/bj2520661 pmid: 3421916
[12] Kalyuzhnaya M G, Hristova K R, Lidstrom M E, et al. Characterization of a novel methanol dehydrogenase in representatives of Burkholderiales: implications for environmental detection of methylotrophy and evidence for convergent evolution. Journal of Bacteriology, 2008,190(11):3817-3823.
doi: 10.1128/JB.00180-08 pmid: 18390659
[13] Zhu T, Zhao T, Bankefa O E, et al. Engineering unnatural methylotrophic cell factories for methanol-based biomanufacturing: challenges and opportunities. Biotechnology Advances, 2020,39:107467.
doi: 10.1016/j.biotechadv.2019.107467 pmid: 31697995
[14] Müller J E N, Litsanov B, Bortfeld-Miller M, et al. Proteomic analysis of the thermophilic methylotroph Bacillus methanolicus MGA3. Proteomics, 2014,14(6):725-737.
doi: 10.1002/pmic.201300515 pmid: 24452867
[15] Schrader J, Schilling M, Holtmann D, et al. Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria. Trends in Biotechnology, 2009,27(2):107-115.
doi: 10.1016/j.tibtech.2008.10.009 pmid: 19111927
[16] Kato N, Yurimoto H & Thauer R K. The physiological role of the ribulose monophosphate pathway in bacteria and archaea. Bioscience, Biotechnology, and Biochemistry, 2006,70(1):10-21.
doi: 10.1271/bbb.70.10 pmid: 16428816
[17] Brautaset T, Jakobsen Ø M, Flickinger M C, et al. Plasmid-dependent methylotrophy in thermotolerant Bacillus methanolicus. Journal of Bacteriology, 2004,186(5):1229-1238.
doi: 10.1128/jb.186.5.1229-1238.2004 pmid: 14973041
[18] Ochsner A M, Sonntag F, Buchhaupt M, et al. Methylobacterium extorquens: methylotrophy and biotechnological applications. Applied Microbiology and Biotechnology, 2015,99(2):517-534.
doi: 10.1007/s00253-014-6240-3 pmid: 25432674
[19] Crowther G J, Kosály G & Lidstrom M E. Formate as the main branch point for methylotrophic metabolism in Methylobacterium extorquens AM1. Journal of Bacteriology, 2008,190(14):5057-5062.
doi: 10.1128/JB.00228-08 pmid: 18502865
[20] Smejkalová H, Erb T J & Fuchs G, et al. Methanol assimilation in Methylobacterium extorquens AM1: demonstration of all enzymes and their regulation. PLoS One, 2010,5(10):e13001.
doi: 10.1371/journal.pone.0013001 pmid: 20957036
[21] Brautaset T, Williams M D, Dillingham R D, et al. Role of the Bacillus methanolicus citrate synthase II gene, citY, in regulating the secretion of glutamate in L-lysine-secreting mutants. Applied and Environmental Microbiology, 2003,69:3986-3995.
doi: 10.1128/aem.69.7.3986-3995.2003 pmid: 12839772
[22] Brautaset T, Jakobsen O M, Degnes K F, et al. Bacillus methanolicus pyruvate carboxylase and homoserine dehydrogenase I and II and their roles for L-lysine production from methanol at 50 degrees C. Appl. Microbiol. Biotechnol., 2010,87:951-964.
doi: 10.1007/s00253-010-2559-6 pmid: 20372887
[23] Withers S T, Gottlieb S S, Lieu B, et al. Identification of isopentenol biosynthetic genes from Bacillus subtilis by a screening method based on isoprenoid precursor toxicity. Applied and Environmental Microbiology, 2007,73(19):6277-6283.
doi: 10.1128/AEM.00861-07 pmid: 17693564
[24] Müller J E N, Meyer F, Litsanov B, et al. Engineering Escherichia coli for methanol conversion. Metabolic Engineering, 2015,28:190-201.
doi: 10.1016/j.ymben.2014.12.008 pmid: 25596507
[25] Whitaker W B, Jones J A, Bennett R K, et al. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli. Metabolic Engineering, 2017,39:49-59.
doi: 10.1016/j.ymben.2016.10.015 pmid: 27815193
[26] Witthoff S, Muhlroth A, Marienhagen J, et al. C1 metabolism in Corynebacterium glutamicum an endogenous pathway for oxidation of methanol to carbon dioxide. Applied and Environmental Microbiology, 2013,79(22):6974-6983.
doi: 10.1128/AEM.02705-13 pmid: 24014532
[27] Wu T Y, Chen C T, Liu J T J. et al. Characterization and evolution of an activator-independent methanol dehydrogenase from Cupriavidus necator N-1. Applied Microbiology and Biotechnology, 2016,100(11):4969-4983.
doi: 10.1007/s00253-016-7320-3 pmid: 26846745
[28] Roth T B, Woolston B M, Stephanopoulos G, et al. Phage-assisted evolution of Bacillus methanolicus methanol dehydrogenase 2. ACS Synthetic Biology, 2019,8(4):796-806.
doi: 10.1021/acssynbio.8b00481 pmid: 30856338
[29] Couderc R & Baratti J. Oxidation of methanol by the Yeast, Pichia pastoris. Purification and properties of the alcohol oxidase. Agricultural and Biological Chemistry, 1980,44(10):2279-2289.
[30] Price J V, Chen L, Whitaker W B, et al. Scaffoldless engineered enzyme assembly for enhanced methanol utilization. Proceedings of the National Academy of Sciences, 2016,113(45):12691-12696.
[31] Woolston B M, King J R, Reiter M, et al. Improving formaldehyde consumption drives methanol assimilation in engineered E. coli. Nature Communications, 2018,9(1):2387.
doi: 10.1038/s41467-018-04795-4 pmid: 29921903
[32] Chen C T, Chen F Y, Bogorad I W, et al. Synthetic methanol auxotrophy of Escherichia coli for methanol-dependent growth and production. Metabolic Engineering, 2018,49:257-266.
doi: 10.1016/j.ymben.2018.08.010 pmid: 30172686
[33] Meyer F, Keller P, Hartl J, et al. Methanol-essential growth of Escherichia coli. Nature Communications, 2018,9(1):1508.
doi: 10.1038/s41467-018-03937-y pmid: 29666370
[34] Wang Y, Fan L, Tuyishime P, et al. Adaptive laboratory evolution enhances methanol tolerance and conversion in engineered Corynebacterium glutamicum. Communications Biology, 2020,3(1):217.
doi: 10.1038/s42003-020-0954-9 pmid: 32382107
[35] Siegel J B, Smith A L, Poust S, et al. Computational protein design enables a novel one-carbon assimilation pathway. Proceedings of the National Academy of Sciences, 2015,112(12):3704-3709.
[36] Yang J, Zhu Y, Qu G, et al. Biosynthesis of dendroketose from different carbon sources using in vitro and in vivo metabolic engineering strategies. Biotechnology for Biofuels, 2018,11(1):290.
[37] Irla M, Nærdal I, Brautaset T, et al. Methanol-based γ-aminobutyric acid (GABA) production by genetically engineered Bacillus methanolicus strains. Industrial Crops and Products, 2017,106:12-20.
[38] Witthoff S, Schmitz K, Niedenführ S, et al. Metabolic engineering of Corynebacterium glutamicum for methanol metabolism. Applied and Environmental Microbiology, 2015,81(6):2215-2225.
doi: 10.1128/AEM.03110-14 pmid: 25595770
[39] Leβmeier L, Pfeifenschneider J, Carnicer M, et al. Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate. Applied Microbiology and Biotechnology, 2015,99(23):10163-10176.
doi: 10.1007/s00253-015-6906-5 pmid: 26276544
[40] Zhang W, Zhang T, Song M, et al. Metabolic engineering of Escherichia coli for high yield production of succinic acid driven by methanol. ACS Synthetic Biology, 2018,7(12):2803-2811.
doi: 10.1021/acssynbio.8b00109 pmid: 30300546
[41] Bennett R K, Gonzalez J E, Whitaker W B, et al. Expression of heterologous non-oxidative pentose phosphate pathway from Bacillus methanolicus and phosphoglucose isomerase deletion improves methanol assimilation and metabolite production by a synthetic Escherichia coli methylotroph. Metabolic Engineering, 2018,45:75-85.
doi: 10.1016/j.ymben.2017.11.016 pmid: 29203223
[42] Wang X, Wang X, Lu X, et al. Methanol fermentation increases the production of NAD(P)H-dependent chemicals in synthetic methylotrophic Escherichia coli. Biotechnology for Biofuels, 2019,12(1):17.
[43] Chou A, Clomburg J M, Qian S, et al. 2-Hydroxyacyl-CoA lyase catalyzes acyloin condensation for one-carbon bioconversion. Nature Chemical Biology, 2019,15(9):900-906.
doi: 10.1038/s41589-019-0328-0 pmid: 31383974
[44] Dai Z, Gu H, Zhang S, et al. Metabolic construction strategies for direct methanol utilization in Saccharomyces cerevisiae. Bioresource Technology, 2017,245(Pt B):1407-1412.
doi: 10.1016/j.biortech.2017.05.100 pmid: 28554521
[45] Tuyishime P, Wang Y, Fan L, et al. Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production. Metabolic Engineering, 2018,49:220-231.
doi: 10.1016/j.ymben.2018.07.011 pmid: 30048680
[46] Naerdal I, Pfeifenschneider J, Brautaset T, et al. Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains. Microbial Biotechnolpgy, 2015,8(2):342-350.
[47] Wang Y, Fan L, Tuyishime P, et al. Synthetic methylotrophy: a practical solution for methanol-based biomanufacturing. Trends in Biotechnology, 2020,38(6):650-666.
doi: 10.1016/j.tibtech.2019.12.013 pmid: 31932066
[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 黄焕邦,吴洋,杨友辉,王兆官,齐浩. 基于古菌酪氨酰tRNA合成酶非天然氨基酸插入的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 110-125.
[3] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[4] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[5] 郑义,郭世英,隋凤翔,杨骐羽,卫雅萱,李晓岩. 群体感应系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(11): 100-109.
[6] 察亚平, 朱牧孜, 李爽. 体内连续定向进化研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 42-51.
[7] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[8] 常璐, 黄娇芳, 董浩, 周斌辉, 朱小娟, 庄英萍. 合成生物学改造微生物及生物被膜用于重金属污染检测与修复 *[J]. 中国生物工程杂志, 2021, 41(1): 62-71.
[9] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[10] 张玉婷,李伟国,梁冬梅,乔建军,财音青格乐. P450s在萜类合成方面的合成生物学研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 84-96.
[11] 王震,李霞,元英进. 微生物异源合成咖啡酸及其酯类衍生物研究进展 *[J]. 中国生物工程杂志, 2020, 40(7): 91-99.
[12] 刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.
[13] 严建,贾禄强,丁健,史仲平. 甲醇周期诱导控制强化毕赤酵母生产猪α干扰素 *[J]. 中国生物工程杂志, 2019, 39(6): 32-40.
[14] 谢华玲,李东巧,迟培娟,杨艳萍. 合成生物学领域专利竞争态势分析[J]. 中国生物工程杂志, 2019, 39(4): 114-123.
[15] 马雅婷,刘珍宁,刘雪,於洪建,赵广荣. 微生物异源合成植物异喹啉生物碱的新进展 *[J]. 中国生物工程杂志, 2019, 39(11): 123-131.