Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (4): 69-77    DOI: 10.13523/j.cb.1910019
综述     
肿瘤多药耐药与自噬、DNA修复和肿瘤干细胞相关的分子机制研究进展 *
戴奇男1,张景红1,2,**()
1 华侨大学医学院 泉州 362021
2 华侨大学分子药物教育部工程研究中心 泉州 362021
Advances in Molecular Mechanisms Related to Tumor Multi-drug Resistance, Autophagy, DNA Repair and Tumor Stem Cells
DAI Qi-nan1,ZHANG Jing-hong1,2,**()
1 School of Medicine, Huaqiao University, Quanzhou, Fujian 362021, China
2 Insititute of Molecular Medicine, Huaqiao University, Quanzhou, Fujian 362021, China
 全文: PDF(717 KB)   HTML
摘要:

肿瘤多药耐药(multi-drug resistance, MDR)所导致的化疗失败,依旧是肿瘤治疗中存在的难点。虽然针对MDR,已经成功开发了三代靶向三磷酸腺苷结合盒转运体(ATP binding cassette transporter, ABC)的抑制剂,也有MDR调节剂和化学增敏剂,多功能纳米载体和RNA干扰等方法可有效逆转MDR,但是由于肿瘤多药耐药机制的复杂性,MDR依然是肿瘤治疗中面临的难题。将从目前研究比较集中的ABC转运体异常表达;DNA损伤修复的改变和细胞凋亡的异常;自噬诱导与耐药及肿瘤干细胞与耐药等四方面入手,针对目前MDR机制的研究进展做一综述,旨在为MDR的研究提供思路和方法。

关键词: 肿瘤多药耐药ABC转运体DNA损伤修复自噬肿瘤干细胞    
Abstract:

The failure of chemotherapy caused by tumor multi-drug resistance (MDR) is still a difficult point in tumor treatment. Although three generations of inhibitors have been successfully developed for MDR, targeting ATP binding cassette transporter (ABC), there are also effective methods to reverse MDR, such as MDR regulator or chemical sensitizer, multifunctional nanocarrier and RNA interference, but MDR is still a difficulty in tumor treatment due to the complexity of tumor multi-drug resistance mechanism. In this paper, we will focus on the abnormal expression of ABC transporter, The changes of DNA injury repair and apoptosis, autophagy induction and drug resistance, tumor stem cells and drug resistance were reviewed in order to provide ideas and methods for the study of MDR.

Key words: Tumor multi-drug resistance    ABC transporter    DNA damage repair    Autophagy    Tumor stem cells
收稿日期: 2019-10-15 出版日期: 2020-05-18
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(81173053);福建省引导性项目(2018Y0062);泉州市高层次人才项目(2018C075R)
通讯作者: 张景红     E-mail: zjh@hqu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
戴奇男
张景红

引用本文:

戴奇男,张景红. 肿瘤多药耐药与自噬、DNA修复和肿瘤干细胞相关的分子机制研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 69-77.

DAI Qi-nan,ZHANG Jing-hong. Advances in Molecular Mechanisms Related to Tumor Multi-drug Resistance, Autophagy, DNA Repair and Tumor Stem Cells. China Biotechnology, 2020, 40(4): 69-77.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.1910019        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I4/69

图1  DNA损伤修复和细胞凋亡相关的耐药机制
图2  肿瘤多药耐药与自噬、DNA修复和CSCs的相关分子机制
[1] Bray F, Ferlay J, Soerjomataram I , et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018,68(6):394-424.
doi: 10.3322/caac.21492 pmid: 30207593
[2] Cao Y, Li Z, Mao L , et al. The use of proteomic technologies to study molecular mechanisms of multidrug resistance in cancer. European Journal of Medicinal Chemistry, 2019,162:423-434.
doi: 10.1016/j.ejmech.2018.10.001 pmid: 30453249
[3] Mohammad I S, He W, Yin L . Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR. Biomedicine & Pharmacotherapy, 2018,100:335-348.
doi: 10.1016/j.biopha.2018.02.038 pmid: 29453043
[4] De Vera A, Gupta P, Lei Z , et al. Immuno-oncology agent IPI-549 is a modulator of P-glycoprotein (P-gp, MDR1, ABCB1)-mediated multidrug resistance (MDR) in cancer: In vitro and in vivo. Cancer Letters, 2019,442:91-103.
doi: 10.1016/j.canlet.2018.10.020 pmid: 30391357
[5] 熊婷, 李丽丁 . ABC转运体介导肿瘤多药耐药机制的研究进展. 临床与病理杂志, 2017,37(1):189-193.
Xiong T, Li L . Research progress of ABC transporter mediated multidrug resistance mechanism. J Clin Pathol Res, 2017,37(1):189-193.
[6] Liao R, Lin Y, Zhu L . Molecular pathways involved in microRNA-mediated regulation of multidrug resistance. Molecular Biology Reports, 2018,45(6):2913-2923.
doi: 10.1007/s11033-018-4358-6 pmid: 30194558
[7] Chen J, Ding Z, Peng Y , et al. HIF-1a inhibition reverses multidrug resistance in colon cancer cells via downregulation of MDR1/P- glycoprotein. PLoS One, 2015,9(6):e98882.
doi: 10.1371/journal.pone.0098882 pmid: 24901645
[8] Kovalchuk O, Filkowski J, Meservy J , et al. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Molecular Cancer Therapeutics, 2008,7(7):2152-2159.
doi: 10.1158/1535-7163.MCT-08-0021 pmid: 18645025
[9] Chen J, Tian W, Cai H , et al. Down-regulation of microRNA-200c is associated with drug resistance in human breast cancer. Medical Oncology, 2012,29(4):2527-2534.
doi: 10.1007/s12032-011-0117-4
[10] Lu C, Shan Z, Li C , et al. MiR-129 regulates cisplatin-resistance in human gastric cancer cells by targeting P-gp. Biomedicine & Pharmacotherapy, 2017,86:450-456.
doi: 10.1016/j.biopha.2016.11.139 pmid: 28012924
[11] Zhou H, Lin C, Zhang Y , et al. MiR-506 enhances the sensitivity of human colorectal cancer cells to oxaliplatin by suppressing MDR1/P-gp expression. Cell Proliferation, 2017,50(3):e12341.
doi: 10.1111/cpr.12341 pmid: 28217977
[12] Chen S F, Zhang Z Y, Zhang J L . Meloxicam increases intracellular accumulation of doxorubicin via downregulation of multidrug resistance-associated protein 1 (MRP1) in A549 cells. Genetics and Molecular Research, 2015,14(4):14548-14560.
doi: 10.4238/2015.November.18.18 pmid: 26600514
[13] Rocha G D G, Oliveira R R, Kaplan M A C , et al. 3β-Acetyl tormentic acid reverts MRP1/ABCC1 mediated cancer resistance through modulation of intracellular levels of GSH and inhibition of GST activity. European Journal of Pharmacology, 2014,741:140-149.
doi: 10.1016/j.ejphar.2014.07.054
[14] Xu K, Liang X, Shen K , et al. MiR-297 modulates multidrug resistance in human colorectal carcinoma by down-regulating MRP-2. Biochemical Journal, 2012,446(2):291-300.
doi: 10.1042/BJ20120386 pmid: 22676135
[15] Doyle L A, Yang W, Abruzzo L V , et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A, 1998,95(26):15665-15670.
doi: 10.1073/pnas.95.26.15665 pmid: 9861027
[16] Jiao X, Zhao L, Ma M , et al. MiR-181a enhances drug sensitivity in mitoxantone-resistant breast cancer cells by targeting breast cancer resistance protein (BCRP/ABCG2). Breast Cancer Research and Treatment, 2013,139(3):717-730.
doi: 10.1007/s10549-013-2607-x
[17] Ma M, He M, Wang Y , et al. MiR-487a resensitizes mitoxantrone (MX)-resistant breast cancer cells (MCF-7/MX) to MX by targeting breast cancer resistance protein (BCRP/ABCG2). Cancer Letters, 2013,339(1):107-115.
doi: 10.1016/j.canlet.2013.07.016
[18] Slovak M, Ho J, Cole S , et al. The LRP gene encoding a major vault protein associated with drug resistance maps proximal to MRP on chromosome 16: evidence that chromosome breakage plays a key role in MRP or LRP gene amplification. Cancer Research, 1995,55:4214-4219.
pmid: 7671223
[19] Xiao Y, Zeng D, Liang Y , et al. Major vault protein is a direct target of Notch1 signaling and contributes to chemoresistance in triple-negative breast cancer cells. Cancer Letters, 2019, 440-441:156-167.
doi: 10.1016/j.canlet.2018.09.031 pmid: 30336197
[20] Torgovnick A, Schumacher B . DNA repair mechanisms in cancer development and therapy. Frontiers in Genetics, 2015,6.
doi: 10.3389/fgene.2015.00157 pmid: 25954303
[21] Naghizadeh S, Mohammadi A, Baradaran B , et al. Overcoming multiple drug resistance in lung cancer using siRNA targeted therapy. Gene, 2019,714:143972.
doi: 10.1016/j.gene.2019.143972 pmid: 31301483
[22] Assaraf Y G, Brozovic A, Gonçalves A C , et al. The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resistance Updates, 2019,46:100645.
doi: 10.1016/j.drup.2019.100645 pmid: 31585396
[23] Heyza J R, Arora S, Zhang H , et al. Targeting the DNA repair endonuclease ERCC1-XPF with green tea polyphenol epigallocatechin-3-gallate (EGCG) and its prodrug to enhance cisplatin efficacy in human cancer cells. Nutrients, 2018,10(11):1644.
doi: 10.3390/nu10111644 pmid: 30400270
[24] Williamson E A, Damiani L, Leitao A , et al. Targeting the transposase domain of the DNA repair component metnase to enhance chemotherapy. Cancer Research, 2012,72(23):6200-6208.
doi: 10.1158/0008-5472.CAN-12-0313
[25] Chen X, Li Y, Ouyang T , et al. Associations between RAD51D germline mutations and breast cancer risk and survival in BRCA1/2-negative breast cancers. Annals of Oncology, 2018,29(10):2046-2051.
doi: 10.1093/annonc/mdy338 pmid: 30165555
[26] Hou J, Zhao L, Zhang D , et al. Prognostic value of mismatch repair genes for patients with colorectal cancer: meta-analysis. Technology in Cancer Research & Treatment, 2018,17:1077076155.
doi: 10.1177/1533033818808507 pmid: 30411662
[27] Ashworth A, Lord C J . Synthetic lethal therapies for cancer: what’s next after PARP inhibitors? Nat Rev Clin Oncol, 2018,15(9):564-576.
doi: 10.1038/s41571-018-0055-6 pmid: 29955114
[28] Oza A, Tinker A, Oaknin A , et al. Antitumor activity and safety of the PARP inhibitor rucaparib in patients with high-grade ovarian carcinoma and a germline or somatic BRCA1 or BRCA2 mutation: integrated analysis of data from study 10 and ARIEL2. Gynecologic Oncology, 2017,147:267-275.
doi: 10.1016/j.ygyno.2017.08.022 pmid: 28882436
[29] Pettitt S, Lord C . Dissecting PARP inhibitor resistance with functional genomics. Current Opinion in Genetics & Development, 2019,54:55-63.
doi: 10.1016/j.gde.2019.03.001 pmid: 30954761
[30] Madariaga A, Lheureux S, Oza A . Tailoring ovarian cancer treatment: implications of BRCA1/2 mutations. Cancers, 2019,11(3):416.
doi: 10.3390/cancers11030416 pmid: 30909618
[31] Zaman S, Wang R, Gandhi V . Targeting the apoptosis pathway in hematologic malignancies. Leukemia & Lymphoma, 2014,55(9):1980-1992.
doi: 10.3109/10428194.2013.855307 pmid: 24295132
[32] Huang Z, Lei X, Zhong M , et al. Bcl-2 small interfering RNA sensitizes cisplatin-resistant human lung adenocarcinoma A549/DDP cell to cisplatin and diallyl disulfide. Acta Biochimica et Biophysica Sinica, 2007,39(11):835-843.
doi: 10.1111/j.1745-7270.2007.00356.x pmid: 17989874
[33] Zou M, Xia S, Zhuang L , et al. Knockdown of the Bcl-2 gene increases sensitivity to EGFR tyrosine kinase inhibitors in the H1975 lung cancer cell line harboring T790M mutation. Int J Oncol, 2013,42(6):2094-2102.
doi: 10.3892/ijo.2013.1895
[34] Zhang J, Liu J, Li H , et al. Beta-catenin signaling pathway regulates cisplatin resistance in lung adenocarcinoma cells by upregulating Bcl-xl. Mol Med Rep, 2016,13(3):2543-2551.
doi: 10.3892/mmr.2016.4882 pmid: 26860078
[35] Dong X, Lin D, Low C , et al. Elevated expression of BIRC6 protein in non-small-cell lung cancers is associated with cancer recurrence and chemoresistance. Journal of Thoracic Oncology, 2013,8(2):161-170.
doi: 10.1097/JTO.0b013e31827d5237 pmid: 23287853
[36] Crnkovic-Mertens I, Muley T, Meister M , et al. The anti-apoptotic livin gene is an important determinant for the apoptotic resistance of non-small cell lung cancer cells. Lung Cancer, 2006,54(2):135-142.
doi: 10.1016/j.lungcan.2006.07.018 pmid: 16965834
[37] Yan B . Research progress on livin protein: an inhibitor of apoptosis. Molecular and Cellular Biochemistry, 2011,357(1-2):39-45.
doi: 10.1007/s11010-011-0873-7
[38] Sameiyan E, Hayes A W, Karimi G . The effect of medicinal plants on multiple drug resistance through autophagy: A review of in vitro studies. European Journal of Pharmacology, 2019,852:244-253.
doi: 10.1016/j.ejphar.2019.04.001 pmid: 30965056
[39] Li X, Zhou Y, Li Y , et al. Autophagy: A novel mechanism of chemoresistance in cancers. Biomedicine & Pharmacotherapy, 2019,119:109415.
doi: 10.1016/j.biopha.2019.109415 pmid: 31514065
[40] Izdebska M, Zielińska W, Hanas-Wisniewska M , et al. Involvement of actin in autophagy and autophagy-dependent multidrug resistance in cancer. Cancers, 2019,11(8):1209.
doi: 10.3390/cancers11081209 pmid: 31434275
[41] Shuhua W, Chenbo S, Yangyang L , et al. Autophagy-related genes raptor, rictor, and beclin1 expression and relationship with multidrug resistance in colorectal carcinoma. Human Pathology, 2015,46(11):1752-1759.
doi: 10.1016/j.humpath.2015.07.016 pmid: 26363527
[42] An Y, Zhang Z, Shang Y , et al. MiR-23b-3p regulates the chemoresistance of gastric cancer cells by targeting ATG12 and HMGB2. Cell Death & Disease, 2015,6(5):e1766.
doi: 10.1038/cddis.2015.123 pmid: 25996293
[43] Ge J, Chen Z, Huang J , et al. Upregulation of autophagy-related gene-5 (ATG-5) is associated with chemoresistance in human gastric cancer. PLoS One, 2014,9(10):e110293.
doi: 10.1371/journal.pone.0110293 pmid: 25329677
[44] Chittaranjan S, Bortnik S, Dragowska W H , et al. Autophagy inhibition augments the anticancer effects of epirubicin treatment in anthracycline-sensitive and resistant triple-negative breast cancer. Clinical Cancer Research, 2014,20(12):3159-3173.
doi: 10.1158/1078-0432.CCR-13-2060
[45] Li J, Cheng C, Yang C , et al. Dual inhibitor of phosphoinositide 3-kinase/mammalian target of rapamycin NVP-BEZ235 effectively inhibits cisplatin-resistant urothelial cancer cell growth through autophagic flux. Toxicology Letters, 2013,220(3):267-276.
doi: 10.1016/j.toxlet.2013.04.021 pmid: 23651616
[46] Zhang Q, Yang W, Man N , et al. Autophagy-mediated chemosensitization in cancer cells by fullerene C60 nanocrystal. Autophagy, 2009,5(8):1107-1117.
doi: 10.4161/auto.5.8.9842 pmid: 19786831
[47] Wei P, Zhang L, Lu Y , et al. C60(Nd) nanoparticles enhance chemotherapeutic susceptibility of cancer cells by modulation of autophagy. Nanotechnology, 2010,21(49):495101.
doi: 10.1088/0957-4484/21/49/495101 pmid: 21071824
[48] Liang X H, Kleeman L K, Jiang H H , et al. Protection against fatal sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. Journal of Virology, 1998,72(11):8586-8596.
pmid: 9765397
[49] Dinkova-Kostova A T, Baird L, Holmström K M , et al. The spatiotemporal regulation of the Keap1-Nrf2 pathway and its importance in cellular bioenergetics. Biochemical Society Transactions, 2015,43(4):602-610.
doi: 10.1042/BST20150003 pmid: 26551700
[50] Park J S, Kang D H, Bae S H . p62 prevents carbonyl cyanide m-chlorophenyl hydrazine (CCCP)-induced apoptotic cell death by activating Nrf2. Biochemical and Biophysical Research Communications, 2015,464(4):1139-1144.
doi: 10.1016/j.bbrc.2015.07.093 pmid: 26208452
[51] Shen J, Chen Y, Jia Y , et al. Reverse effect of curcumin on CDDP-induced drug-resistance via Keap1/p62-Nrf2 signaling in A549/CDDP cell. Asian Pacific Journal of Tropical Medicine, 2017,10(12):1190-1196.
doi: 10.1016/j.apjtm.2017.10.028 pmid: 29268977
[52] Feng Z . p53 regulation of the IGF-1/AKT/mTOR pathways and the endosomal compartment. Cold Spring Harbor Perspectives in Biology, 2010,2(2):a1057.
doi: 10.1101/cshperspect.a001057 pmid: 20182617
[53] Sui X, Jin L, Huang X , et al. p53 signaling and autophagy in cancer: A revolutionary strategy could be developed for cancer treatment. Autophagy, 2011,7(6):565-571.
doi: 10.4161/auto.7.6.14073
[54] Thomas A, Giesler T, White E . p53 mediates bcl-2 phosphorylation and apoptosis via activation of the Cdc42/JNK1 pathway. Oncogene, 2000,19(46):5259-5269.
doi: 10.1038/sj.onc.1203895 pmid: 11077443
[55] Dean M . ABC transporters, drug resistance, and cancer stem cells. Journal of Mammary Gland Biology and Neoplasia, 2009,14(1):3-9.
doi: 10.1007/s10911-009-9109-9
[56] Resetkova E, Resetkova E, Reis-Filho J S , et al. Prognostic impact of ALDH1 in breast cancer: a story of stem cells and tumor microenvironment. Breast Cancer Research and Treatment, 2010,123(1):97-108.
doi: 10.1007/s10549-009-0619-3
[57] Nassar D, Blanpain C . Cancer stem cells: basic concepts and therapeutic implications. Annual Review of Pathology: Mechanisms of Disease, 2016,11(1):47-76.
doi: 10.1146/annurev-pathol-012615-044438
[58] Todaro M, Francipane M G, Medema J P , et al. Colon cancer stem cells: promise of targeted therapy. Gastroenterology, 2010,138(6):2151-2162.
doi: 10.1053/j.gastro.2009.12.063 pmid: 20420952
[59] Peitzsch C, Kurth I, Kunz-Schughart L , et al. Discovery of the cancer stem cell related determinants of radioresistance. Radiotherapy and Oncology, 2013,108(3):378-387.
doi: 10.1016/j.radonc.2013.06.003
[60] Karamboulas C, Ailles L . Developmental signaling pathways in cancer stem cells of solid tumors. Biochimica et Biophysica Acta (BBA) - General Subjects, 2013,1830(2):2481-2495.
doi: 10.1016/j.bbagen.2012.11.008 pmid: 23196196
[61] Roca M S, Di Gennaro E, Budillon A . Implication for cancer stem cells in solid cancer chemo-resistance: promising therapeutic strategies based on the use of HDAC inhibitors. Journal of clinical medicine, 2019,8(7):912.
doi: 10.3390/jcm8070912 pmid: 31247937
[62] Du F, Zhou Q, Sun W , et al. Targeting cancer stem cells in drug discovery: current state and future perspectives. World J Stem Cells, 2019,11(7):398-420.
doi: 10.4252/wjsc.v11.i7.398 pmid: 31396368
[63] Huang L, Huang X, Li X , et al. Entinostat reverses cisplatin resistance in esophageal squamous cell carcinoma via down-regulation of multidrug resistance gene 1. Cancer Letters, 2018,414:294-300.
doi: 10.1016/j.canlet.2017.10.023 pmid: 29107111
[64] Zhao G, Wang G, Bai H , et al. Targeted inhibition of HDAC8 increases the doxorubicin sensitivity of neuroblastoma cells via up regulation of miR-137. European Journal of Pharmacology, 2017,802:20-26.
doi: 10.1016/j.ejphar.2017.02.035 pmid: 28223126
[65] To K K, Tong W, Fu L . Reversal of platinum drug resistance by the histone deacetylase inhibitor belinostat. Lung Cancer, 2017,103:58-65.
doi: 10.1016/j.lungcan.2016.11.019 pmid: 28024697
[66] Di Gennaro E, Bruzzese F, Pepe S , et al. Modulation of thymidilate synthase and p53 expression by HDAC inhibitor vorinostat resulted in synergistic antitumor effect in combination with 5FU or raltitrexed. Cancer Biology & Therapy, 2009,8(9):782-791.
doi: 10.4161/cbt.8.9.8118 pmid: 19270508
[67] Wang Z, Tang F, Hu P , et al. HDAC6 promotes cell proliferation and confers resistance to gefitinib in lung adenocarcinoma. Oncology Reports, 2016,36(1):589-597.
doi: 10.3892/or.2016.4811 pmid: 27221381
[68] Krug L, Kindler H, Calvert H , et al. Vorinostat in patients with advanced malignant pleural mesothelioma who have progressed on previous chemotherapy (VANTAGE-014): a phase 3, double-blind, randomized, placebo-controlled trial. Lancet Oncology, 2015,16(4):447-456.
doi: 10.1016/S1470-2045(15)70056-2 pmid: 25800891
[69] Suraweera A, O Byrne K J, Richard D J . Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi. Frontiers in Oncology, 2018,8.
doi: 10.3389/fonc.2018.00092 pmid: 29651407
[70] Ramalingam S S, Maitland M L, Frankel P , et al. Carboplatin and paclitaxel in combination with either vorinostat or placebo for first-line therapy of advanced non-small-cell lung cancer. Journal of Clinical Oncology, 2010,28(1):56-62.
doi: 10.1200/JCO.2009.24.9094 pmid: 19933908
[1] 李潇瑾,李艳萌,李振坤,徐安健,杨晓曦,黄坚. 基于转录组测序探究ATP7B基因缺陷小鼠铜累积诱导肝细胞自噬的相关机制*[J]. 中国生物工程杂志, 2021, 41(9): 10-19.
[2] 董雪迎,梁凯,叶克应,周策凡,唐景峰. 受体酪氨酸激酶对自噬的调控及其研究进展*[J]. 中国生物工程杂志, 2021, 41(5): 72-78.
[3] 蔡润泽,王正波,陈永昌. Mecp2影响Rett综合征中代谢功能的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 89-97.
[4] 韩雪怡,李一帆,陆玥达,熊国良,喻长远. 具有自噬抑制作用的卟啉金属有机框架的制备及其光动力癌症治疗的研究*[J]. 中国生物工程杂志, 2021, 41(11): 48-54.
[5] 张晨阳,黑常春,袁仕林,周玉佳,曹美玲,秦亦欣,杨笑. SIRT3抑制线粒体自噬并减轻高糖加重的神经元缺氧再灌注损伤*[J]. 中国生物工程杂志, 2021, 41(11): 1-13.
[6] 曾祥意,潘杰. 自噬调控白色脂肪细胞棕色化的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 63-73.
[7] 胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.
[8] 朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.
[9] 杨晓燕,毛景东,李树森,张新颖,杜立银. 细胞自噬对中性粒细胞功能调节的研究进展 *[J]. 中国生物工程杂志, 2019, 39(6): 84-90.
[10] 洪丹彤,张帆,王淑娥,王红霞,刘昆梅,徐广贤,霍正浩,郭乐. miR-17-5p靶向自噬相关蛋白ATG7调控巨噬细胞抗结核分枝杆菌感染作用的研究 *[J]. 中国生物工程杂志, 2019, 39(6): 1-8.
[11] 刘艳,戴鹏,朱运峰. 外泌体与自噬体相互关系研究进展 *[J]. 中国生物工程杂志, 2019, 39(6): 78-83.
[12] 马占兵,党洁,杨继辉,霍正浩,徐广贤. 基于慢病毒系统的双荧光标记多功能自噬流监测系统建立与应用 *[J]. 中国生物工程杂志, 2019, 39(5): 88-95.
[13] 汪路,杨丽媛,唐雨婷,陶瑶,雷力,敬一佩,蒋雪坷,张伶. 干扰PKM2对人白血病细胞增殖和凋亡的影响及潜在机制 *[J]. 中国生物工程杂志, 2019, 39(3): 13-20.
[14] 沈冰蕾,王宇轩,韩硕,李熹,杨卓妮娜,邹紫雯,刘娟. 非编码RNA在细胞自噬中的研究进展 *[J]. 中国生物工程杂志, 2019, 39(12): 56-63.
[15] 詹蕙璐,白莹,庄严,孟娟,赵海洋. 纳米材料诱导自噬引发保护作用的研究进展[J]. 中国生物工程杂志, 2019, 39(12): 64-72.