Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (11): 1-13    DOI: 10.13523/j.cb.2106024
研究报告     
SIRT3抑制线粒体自噬并减轻高糖加重的神经元缺氧再灌注损伤*
张晨阳1,黑常春2,袁仕林1,周玉佳1,曹美玲1,秦亦欣1,杨笑3,**()
1 宁夏医科大学临床医学院 银川 750004
2 宁夏医科大学基础医学院 人体解剖与组织胚胎学系 银川 750004
3 宁夏医科大学总医院神经内科 银川 750004
SIRT3 Inhibits Mitophagy and Alleviates Neuronal Oxygen Deprivation/Reoxygenation Injury Aggravated by High Glucose
Chen-yang ZHANG1,Chang-chun HEI2,Shi-lin YUAN1,Yu-jia ZHOU1,Mei-ling CAO1,Yi-xin QIN1,Xiao YANG3,**()
1 School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
2 Department of Human Anatomy, Histology and Embryology, Ningxia Medical University, Yinchuan 750004, China
3 Neuroscience Center, General Hospital of Ningxia Medical University, Yinchuan 750004, China
 全文: PDF(3200 KB)   HTML
摘要:

目的:探讨SIRT3调控的线粒体自噬对高糖加重神经元缺氧再灌注损伤的影响及机制。方法:高糖(50 mmol/L)干预HT22细胞后,构建细胞缺氧/复氧模型,利用SIRT3抑制剂3-TYP抑制SIRT3表达。倒置显微镜观察细胞形态改变,CCK8法检测细胞存活率,流式细胞术检测细胞凋亡率,TMRE荧光试剂盒检测细胞线粒体膜电位,RT-qPCR、Western blot检测相关分子的基因和蛋白质表达。结果:高糖使神经元缺氧再灌注后的细胞碎片进一步增加,细胞存活率降低,细胞凋亡率升高(P<0.05)。此外,高糖降低了神经元缺氧再灌注后的线粒体膜电位(P<0.05)。进一步研究发现,高糖上调神经元缺氧再灌注后线粒体分裂相关蛋白DRP1的表达水平,降低了线粒体融合相关蛋白OPA1和线粒体外膜蛋白TOM20的表达;并且增加了自噬相关蛋白LC3Ⅱ、Beclin-1和线粒体自噬相关蛋白PINK1、Parkin的表达;同时,高糖升高了SIRT3的基因和蛋白质表达(P<0.05)。而SIRT3抑制剂3-TYP使神经元高糖缺氧再灌注损伤加重,同时进一步上调DRP1、LC3Ⅱ和PINK1的蛋白质表达(P<0.05)。结论:高糖可显著加重神经元缺氧再灌注损伤,破坏细胞线粒体功能,激活细胞线粒体自噬;SIRT3可抑制PINK1-Parkin通路介导的线粒体自噬并减轻神经元高糖缺氧再灌注损伤。

关键词: 缺氧再灌注高糖线粒体自噬线粒体融合分裂SIRT3    
Abstract:

Objective: To investigate whether high glucose can aggravate oxygen deprivation/reoxygenation (OD/R) injury in neurons through regulating mitophagy and the specific molecular mechanism of regulating mitophagy. Methods: HT22 cells are used to establish a model of cellular oxygen deprivation/reoxygenation to simulate cerebral ischemia/reperfusion injury in vivo. And cells are treated with high glucose medium (HG 50 mmol/L). 3-TYP is given to inhibit the expression of SIRT3. CCK8 is used to examine cell viability; flow cytometry is used to detect cell apoptosis, and TMRE fluorescence detection kit is used to detect cell MMP; Western blot is used to detect the expression of mitochondrial division/fusion related protein (DRP1, OPA1, TOM20), autophagy related protein (LC3Ⅱ, Beclin-1), mitophagy related protein (PINK1, Parkin) and SIRT3. Results: Compared with OD groups, the cell density is further reduced, the cell contour is more blurred, the synapses are shortened, the floating cells increase in HG+OD groups, and cells in HG+OD groups have lower survival rate and higher apoptosis rate (P<0.05). Compared with OD groups, cells in HG+OD groups have lower MMP (P<0.05). Compared with OD groups, the expression of P-DRP1 in HG+OD groups is increased, but OPA1 and TOM20 are decreased (P<0.05); the expression of Beclin-1 and LC3Ⅱ as well as PINK1 and Parkin in HG+OD groups are also increased (P<0.05). Furthermore, SIRT3 protein and gene are further increased in HG+OD groups (P<0.05). 3-TYP treatment can further aggravate the OD/R injury of neurons in HG groups. And 3-TYP also increases the expression of DRP1, LC3Ⅱ and PINK1. Conclusions: High glucose can aggravate oxygen deprivation/reoxygenation injury in neurons by exacerbation of cell apoptosis, reduction of MMP and activation of mitophagy. In addition, SIRT3 can inhibit PINK1-Parkin pathway-mediated mitophagy and alleviate high glucose aggravated-neuronal OD/R injury.

Key words: Oxygen deprivation/reoxygenation    High glucose    Mitophagy    Mitochondrial fusion and fission    SIRT3
收稿日期: 2021-06-15 出版日期: 2021-12-01
ZTFLH:  Q2  
基金资助: * 国家自然科学基金(82060237);国家自然科学基金(81560226);国家自然科学基金(81860250);宁夏自然科学基金(2018AAC03134);宁夏自然科学基金(2021AAC03371)
通讯作者: 杨笑     E-mail: cckk606@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张晨阳
黑常春
袁仕林
周玉佳
曹美玲
秦亦欣
杨笑

引用本文:

张晨阳,黑常春,袁仕林,周玉佳,曹美玲,秦亦欣,杨笑. SIRT3抑制线粒体自噬并减轻高糖加重的神经元缺氧再灌注损伤*[J]. 中国生物工程杂志, 2021, 41(11): 1-13.

Chen-yang ZHANG,Chang-chun HEI,Shi-lin YUAN,Yu-jia ZHOU,Mei-ling CAO,Yi-xin QIN,Xiao YANG. SIRT3 Inhibits Mitophagy and Alleviates Neuronal Oxygen Deprivation/Reoxygenation Injury Aggravated by High Glucose. China Biotechnology, 2021, 41(11): 1-13.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2106024        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I11/1

成分 S1
正常糖/正常pH
S2
高糖/正常pH
S3
正常糖/低pH
S4
高糖/低pH
NaCl 116.2 116.2 134.1 134.1
KCl 5.4 5.4 5.4 5.4
CaCl2 1.8 1.8 1.8 1.8
MgSO4 0.8 0.8 0.8 0.8
NaH2PO4 1 1 1 1
NaHCO3 26.2 26.2 8.3 8.3
Glucose 25 50 25 50
pH 7.35 7.35 6.5 6.5
表1  高糖缺氧细胞模型所需溶液的各成分浓度
图1  模型制备的实验流程
Name Forward primer(5'→3') Reverse primer(5'→3')
SIRT3 TCTATACACAGAACATCGACGG GCATGTAGCTGTTACAAAGGTC
GAPDH GGTTGTCTCCTGCGACTTCA TGGTCCAGGGTTTCTTACTCC
表2  引物序列
图2  高糖对神经元缺氧再灌注损伤的影响
图3  高糖对神经元缺氧再灌注后线粒体膜电位的影响
图4  高糖对神经元缺氧再灌注后线粒体动态平衡的影响
图5  高糖对神经元缺氧再灌注后线粒体自噬的影响
图6  高糖对神经元缺氧再灌注后SIRT3的影响
图7  3-TYP对神经元高糖缺氧再灌注后SIRT3的影响
图8  抑制SIRT3对神经元高糖缺氧再灌注损伤的影响
图9  抑制SIRT3对神经元高糖神经元缺氧再灌注后线粒体自噬的影响
[1] Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet, 2020, 396(10258):1204-1222.
doi: 10.1016/S0140-6736(20)30925-9
[2] Li J J, Quan K H, Wang Y L, et al. Effect of stress hyperglycemia on neurological deficit and mortality in the acute ischemic stroke people with and without diabetes. Frontiers in Neurology, 2020, 11:576895. DOI: 10.3389/fneur.2020.576895.
doi: 10.3389/fneur.2020.576895
[3] Gabryel B, Kost A, Kasprowska D. Neuronal autophagy in cerebral ischemia:a potential target for neuroprotective strategies? Pharmacological Reports, 2012, 64(1):1-15.
pmid: 22580515
[4] He M T, Ma Y M, Wang R, et al. Deletion of mitochondrial uncoupling protein 2 exacerbates mitochondrial damage in mice subjected to cerebral ischemia and reperfusion injury under both normo- and hyperglycemic conditions. International Journal of Biological Sciences, 2020, 16(15):2788-2802.
doi: 10.7150/ijbs.48204
[5] Geisler S, Holmström K M, Skujat D, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nature Cell Biology, 2010, 12(2):119-131.
doi: 10.1038/ncb2012 pmid: 20098416
[6] Guo C, Sun L, Chen X, et al. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regeneration Research, 2013, 8(21):2003-2014.
[7] 吴新伟, 谭永星. 线粒体自噬的发生机制及其在脑缺血/再灌注损伤中作用的研究进展. 医学综述, 2017, 23(21):4173-4177.
Wu X W, Tan Y X. Research progress of mechanism of mitophagy and its effect in cerebral ischemia reperfusion injury. Medical Recapitulate, 2017, 23(21):4173-4177.
[8] He M T, Zhang T, Fan Y C, et al. Deletion of mitochondrial uncoupling protein 2 exacerbates mitophagy and cell apoptosis after cerebral ischemia and reperfusion injury in mice. International Journal of Medical Sciences, 2020, 17(17):2869-2878.
doi: 10.7150/ijms.49849
[9] Bause A S, Haigis M C. SIRT3 regulation of mitochondrial oxidative stress. Experimental Gerontology, 2013, 48(7):634-639.
doi: 10.1016/j.exger.2012.08.007
[10] Dai S H, Chen T, Li X, et al. Sirt3 confers protection against neuronal ischemia by inducing autophagy: Involvement of the AMPK-mTOR pathway. Free Radical Biology and Medicine, 2017, 108:345-353.
doi: 10.1016/j.freeradbiomed.2017.04.005
[11] Luo X, Yang Z, Zheng S, et al. Retracted: Sirt3 activation attenuated oxidized low-density lipoprotein-induced human umbilical vein endothelial cells’ apoptosis by sustaining autophagy. Cell Biology International, 2017, 41(8):932.
doi: 10.1002/cbin.10291
[12] Ma Y, Zhang Z J, Chen Z R, et al. Suppression of inner mitochondrial membrane peptidase 2-like (IMMP2L) gene exacerbates hypoxia-induced neural death under high glucose condition. Neurochemical Research, 2017, 42(5):1504-1514.
doi: 10.1007/s11064-017-2207-y
[13] Fan D, Yang Z, Liu F Y, et al. Sesamin protects against cardiac remodeling via Sirt3/ROS pathway. Cellular Physiology and Biochemistry, 2017, 44(6):2212-2227.
doi: 10.1159/000486026 pmid: 29248930
[14] Shindo A, Tomimoto H. Diabetes and ischemic stroke. Brain and Nerve, 2014, 66(2):107-119.
[15] Frank M, Duvezin-Caubet S, Koob S, et al. Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2012, 1823(12):2297-2310.
[16] Wang Y Q, Nartiss Y, Steipe B, et al. ROS-induced mitochondrial depolarization initiates PARK2/PARKIN-dependent mitochondrial degradation by autophagy. Autophagy, 2012, 8(10):1462-1476.
doi: 10.4161/auto.21211
[17] Mochizuki H, Goto K, Mori H, et al. Histochemical detection of apoptosis in Parkinson’s disease. Journal of the Neurological Sciences, 1996, 137(2):120-123.
doi: 10.1016/0022-510X(95)00336-Z
[18] Smale G, Nichols N R, Brady D R, et al. Evidence for apoptotic cell death in Alzheimer’s disease. Experimental Neurology, 1995, 133(2):225-230.
pmid: 7544290
[19] Peng W N, Mo X Y, Li L H, et al. PAQR3 protects against oxygen-glucose deprivation/reperfusion-induced injury through the ERK signaling pathway in N2A cells. Journal of Molecular Histology, 2020, 51(3):307-315.
doi: 10.1007/s10735-020-09881-w
[20] Flores-Herrera O, Olvera-Sánchez S, Esparza-Perusquía M, et al. Membrane potential regulates mitochondrial ATP-diphosphohydrolase activity but is not involved in progesterone biosynthesis in human syncytiotrophoblast cells. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2015, 1847(2):143-152.
[21] Wu J J, Yang Y L, Gao Y F, et al. Melatonin attenuates Anoxia/reoxygenation injury by inhibiting excessive mitophagy through the MT2/SIRT3/FoxO3a signaling pathway in H9c2 cells. Drug Design, Development and Therapy, 2020, 14:2047-2060.
doi: 10.2147/DDDT.S248628
[22] Yerra V G, Kumar A. Adenosine monophosphate-activated protein kinase abates hyperglycaemia-induced neuronal injury in experimental models of diabetic neuropathy: effects on mitochondrial biogenesis, autophagy and neuroinflammation. Molecular Neurobiology, 2017, 54(3):2301-2312.
doi: 10.1007/s12035-016-9824-3
[23] Haileselassie B, Mukherjee R, Joshi A U, et al. Drp1/Fis1 interaction mediates mitochondrial dysfunction in septic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2019, 130:160-169.
doi: S0022-2828(18)31194-5 pmid: 30981733
[24] Zuo W, Liu Z Y, Yan F, et al. Hyperglycemia abolished Drp-1-mediated mitophagy at the early stage of cerebral ischemia. European Journal of Pharmacology, 2019, 843:34-44.
doi: 10.1016/j.ejphar.2018.11.011
[25] Shi R Y, Zhu S H, Li V, et al. BNIP3 interacting with LC3 triggers excessive mitophagy in delayed neuronal death in stroke. CNS Neuroscience & Therapeutics, 2014, 20(12):1045-1055.
[26] Bánréti Á, Sass M, Graba Y. The emerging role of acetylation in the regulation of autophagy. Autophagy, 2013, 9(6):819-829.
doi: 10.4161/auto.23908 pmid: 23466676
[27] Yu W J, Gao B L, Li N, et al. Sirt3 deficiency exacerbates diabetic cardiac dysfunction: Role of Foxo3A-Parkin-mediated mitophagy. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2017, 1863(8):1973-1983.
[28] Gleave J A, Arathoon L R, Trinh D, et al. Sirtuin 3 rescues neurons through the stabilisation of mitochondrial biogenetics in the virally-expressing mutant α-synuclein rat model of Parkinsonism. Neurobiology of Disease, 2017, 106:133-146.
doi: 10.1016/j.nbd.2017.06.009
[29] Dai S H, Chen T, Wang Y H, et al. Sirt3 attenuates hydrogen peroxide-induced oxidative stress through the preservation of mitochondrial function in HT22 cells. International Journal of Molecular Medicine, 2014, 34(4):1159-1168.
doi: 10.3892/ijmm.2014.1876
[1] 耿燕, 任怡琳, 许正宏, 窦文芳. 基于胞内cAMP浓度测定融合蛋白GGH活性的改良方法[J]. 中国生物工程杂志, 2013, 33(11): 63-67.