Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (4): 78-83    DOI: 10.13523/j.cb.1910045
综述     
蛋白冠与纳米粒子的相互作用 *
褚宇琦,陆飞妃,刘洋,何芳,王大壮,陈立江()
辽宁大学药学院 沈阳 110036
Interaction between Protein Corona and Nanoparticles
CHU Yu-qi,LU Fei-fei,LIU Yang,HE Fang,WANG Da-zhuang,CHEN Li-jiang()
School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
 全文: PDF(507 KB)   HTML
摘要:

近年来,尽管纳米粒子在生物医学领域的研究中取得了巨大的进展,但很少能进入临床试验阶段,其中,很大程度取决于人们缺乏对纳米粒子与生理环境之间相互作用的认知,对纳米粒子进入体内后的生物学特性了解有限。在生理环境下,蛋白质会吸附于纳米粒子表面,从而形成蛋白冠,这种纳米粒子-蛋白冠复合物的形成严重影响纳米粒子的生物学特性,限制了纳米粒子的临床应用,因此,蛋白质与纳米粒子之间的相互作用应该被深入研究。目前,对纳米粒子-蛋白冠复合物的研究属于一个相对较新的研究领域。概括了蛋白冠的研究现状,对蛋白冠与纳米粒子相互作用所产生的影响进行了重点阐述,也介绍了预防和减少蛋白冠形成的方法,为纳米粒子的进一步研发提供了思路。

关键词: 蛋白冠纳米粒子相互作用    
Abstract:

In recent years, although nanoparticles have made great progress in biomedical research, they rarely enter clinical trials. This is mainly due to the lack of understanding of the interaction between nanoparticles and the physiological environment and the limited understanding of the biological characteristics of nanoparticles after they enter the body. In the physiological environment, proteins adsorb on the surface of nanoparticles and form protein corona. The formation of this nanoparticles-protein corona complex seriously affects the biological characteristics of nanoparticles and restricts the clinical application of nanoparticles. Therefore, the interaction between protein corona and nanoparticles should be further studied. At present, the research on nanoparticle-protein corona complex is a relatively new field. This review summarizes the research status of protein corona, and focuses on the impact of the interaction between protein corona and nanoparticles. It also introduces methods to prevent and reduce the formation of protein corona, providing ideas for further research and development of nanoparticles.

Key words: Protein corona    Nanoparticles    Interaction
收稿日期: 2019-10-25 出版日期: 2020-05-18
ZTFLH:  Q513  
基金资助: * 辽宁省教育厅创新人才支持计划(LR2017065)
通讯作者: 陈立江     E-mail: chlj16@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
褚宇琦
陆飞妃
刘洋
何芳
王大壮
陈立江

引用本文:

褚宇琦,陆飞妃,刘洋,何芳,王大壮,陈立江. 蛋白冠与纳米粒子的相互作用 *[J]. 中国生物工程杂志, 2020, 40(4): 78-83.

CHU Yu-qi,LU Fei-fei,LIU Yang,HE Fang,WANG Da-zhuang,CHEN Li-jiang. Interaction between Protein Corona and Nanoparticles. China Biotechnology, 2020, 40(4): 78-83.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.1910045        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I4/78

图1  蛋白冠的形成及“Vroman”效应
[1] Lin W . Introduction: nanoparticles in medicine. Chemical Reviews, 2015,115(19):10407-10409.
doi: 10.1021/acs.chemrev.5b00534 pmid: 26463639
[2] Sandra G, Usawadee H, Noelie C , et al. Beyond unpredictability: the importance of reproducibility in understanding the protein corona of nanoparticles. Bioconjugate Chemistry, 2018,29(10):3385-3393.
doi: 10.1021/acs.bioconjchem.8b00554 pmid: 30141619
[3] Melby E S, Lohse S E, Park J E , et al. Cascading effects of nanoparticle coatings: surface functionalization dictates the assemblage of complexed proteins and subsequent interaction with model cell membranes. Acs Nano, 2017,11(6):5489-5499.
doi: 10.1021/acsnano.7b00231 pmid: 28482159
[4] Kurtz-Chalot A, Villiers C, Pourchez J , et al. Impact of silica nanoparticle surface chemistry on protein corona formation and consequential interactions with biological cells. Materials Science and Engineering: C, 2017,75:16-24.
doi: 10.1016/j.msec.2017.02.028 pmid: 28415450
[5] Sakulkhu U, Mahmoudi M, Maurizi L , et al. Significance of surface charge and shell material of superparamagnetic iron oxide nanoparticle (SPION) based core/shell nanoparticles on the composition of the protein corona. Biomater Sci, 2015,3(2):265-278.
doi: 10.1039/c4bm00264d pmid: 26218117
[6] Lundqvist M, Stigler J, Elia G , et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. PNAS, 2008,105(38):14265-14270.
doi: 10.1073/pnas.0805135105 pmid: 18809927
[7] Moyano D F, Saha K, Prakash G , et al. Fabrication of corona-free nanoparticles with tunable hydrophobicity. ACS Nano, 2014,8(7):6748-6755.
doi: 10.1021/nn5006478 pmid: 24971670
[8] Hajipour M J, Laurent S, Aghaie A , et al. Personalized protein coronas: a “key” factor at the nanobiointerface. Biomaterials Science, 2014,2(9):1210.
doi: 10.1039/c4bm00131a
[9] Aggarwal P, Hall J B, Mcleland C B , et al. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Advanced Drug Delivery Reviews, 2009,61(6):428-437.
doi: 10.1016/j.addr.2009.03.009 pmid: 19376175
[10] Marichal L, Giraudon-Colas G, Cousin F , et al. Protein-nanoparticle interactions: what are the protein-corona thickness and organization? Langmuir, 2019,35(33):10831-10837.
doi: 10.1021/acs.langmuir.9b01373 pmid: 31333024
[11] Weber C, Morsbach S, Landfester K . Possibilities and limitations of different separation techniques for the analysis of the protein corona. Angewandte Chemie International Edition, 2019,58(37):12787-12794.
doi: 10.1002/anie.201902323 pmid: 30933405
[12] Cedervall T, Lynch I, Lindman S , et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. PNAS, 2007,104(7):2050-2055.
doi: 10.1073/pnas.0608582104 pmid: 17267609
[13] Gunawan C, Lim M, Marquis C P , et al. Nanoparticle-protein corona complexes govern the biological fates and functions of nanoparticles. Journal of Materials Chemistry B, 2014,2(15):2060.
doi: 10.1039/c3tb21526a
[14] Holmberg M, Stibius K B, Larsen N B , et al. Competitive protein adsorption to polymer surfaces from human serum. Journal of Materials Science: Materials in Medicine, 2008,19(5):2179-2185.
doi: 10.1007/s10856-007-3318-9 pmid: 18044011
[15] Gan N, Sun Q, Zhao L , et al. Protein corona of metal-organic framework nanoparticals: study on the adsorption behavior of protein and cell interaction. International Journal of Biological Macromolecules, 2019,140(1):709-718.
doi: 10.1016/j.ijbiomac.2019.08.183 pmid: 31445155
[16] Tran R, Xu Z, Radhakrishnan B , et al. Surface energies of elemental crystals. Scientific Data, 2016,3:160080.
doi: 10.1038/sdata.2016.80 pmid: 27622853
[17] Dominguez-Medina S, Blankenburg J, Olson J , et al. Adsorption of a protein monolayer via hydrophobic interactions prevents nanoparticle aggregation under harsh environmental conditions. ACS Sustainable Chemistry & Engineering, 2013,1(7):833-842.
doi: 10.1021/sc400042h pmid: 23914342
[18] Gebauer J S, Malissek M, Simon S , et al. Impact of the nanoparticle-protein corona on colloidal stability and protein structure. Langmuir, 2012,28(25):9673-9679.
doi: 10.1021/la301104a pmid: 22524519
[19] Thomas L. Moore, Laura Rodriguez-Lorenzo, Vera Hirsch , et al. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chemical Society Reviews, 2015,44(17):6287-6305.
doi: 10.1039/c4cs00487f pmid: 26056687
[20] Safi M, Courtois J, Seigneuret M , et al. The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles. Biomaterials, 2011,32(35):9353-9363.
doi: 10.1016/j.biomaterials.2011.08.048
[21] Cukalevski R, Ferreira S A, Dunning C J , et al. IgG and fibrinogen driven nanoparticle aggregation. Nano Research, 2015,8(8):2733-2743.
doi: 10.1007/s12274-015-0780-4
[22] Gao X, Cui Y, Levenson R M , et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology, 2004,22(8):969-976.
doi: 10.1038/nbt994 pmid: 15258594
[23] Wilhelm S, Tavares A J, Dai Q , et al. Analysis of nanoparticle delivery to tumours. Nature Reviews Materials, 2016,1(5):16014.
doi: 10.1038/natrevmats.2016.14
[24] Carril M, Padro D, DelPino P , et al. In situ detection of the protein corona in complex environments. Nature Communications, 2017,8(1):1542-1546.
doi: 10.1038/s41467-017-01826-4 pmid: 29142258
[25] Lazarovits J, Chen Y Y, Sykes E A , et al. Nanoparticle-blood interactions: the implications on solid tumour targeting. Chemical Communications, 2015,51(14):2756-2767.
doi: 10.1039/c4cc07644c pmid: 26829150
[26] Marilena H, Zahraa A A, Mariarosa M , et al. In vivo biomolecule corona around blood-circulating, clinically used and antibody-targeted lipid bilayer nanoscale vesicles. Acs Nano, 2015,9(8):8142-8156.
doi: 10.1021/acsnano.5b03300 pmid: 26135229
[27] Forest V, Pourchez J . Preferential binding of positive nanoparticles on cell membranes is due to electrostatic interactions: a too simplistic explanation that does not take into account the nanoparticle protein corona. Materials Science & Engineering C Materials for Biological Applications, 2017,70(1):889-896.
doi: 10.1016/j.msec.2016.09.016 pmid: 27770966
[28] Mirshafiee V, Mahmoudi M, Lou K , et al. Protein corona significantly reduces active targeting yield. Chemical Communications, 2013,49(25):2557-2559.
doi: 10.1039/c3cc37307j
[29] Salvati A, Pitek A S, Monopoli M P , et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nature Nanotechnology, 2013,8(2):137-143.
doi: 10.1038/NNANO.2012.237
[30] Dai Q, Yan Y, Guo J , et al. Targeting ability of affibody-functionalized particles is enhanced by albumin but inhibited by serum coronas. ACS Macro Letters, 2015,4(11):1259-1263.
doi: 10.1021/acsmacrolett.5b00627
[31] Ju Y, Dai Q, Cui J , et al. Improving targeting of metal-phenolic capsules by the presence of protein coronas. ACS Applied Materials & Interfaces, 2016,8(35):22914-22922.
doi: 10.1021/acsami.6b07613 pmid: 27560314
[32] Shi J, Kantoff P W, Wooster R , et al. Cancer nanomedicine: progress, challenges and opportunities. Nature Reviews Cancer, 2017,17(1):20-37.
doi: 10.1038/nrc.2016.108 pmid: 27834398
[33] Peng Q, Zhang S, Yang Q , et al. Preformed albumin corona, a protective coating for nanoparticles based drug delivery system. Biomaterials, 2013,34(33):8521-8530.
doi: 10.1016/j.biomaterials.2013.07.102
[34] Shang L, Nienhaus K, Nienhaus G . Engineered nanoparticles interacting with cells: size matters. Journal of Nanobiotechnology, 2014,12(1):5.
doi: 10.1186/1477-3155-12-5 pmid: 24491160
[35] Maynard A D, Warheit D B, Philbert M A . The new toxicology of sophisticated materials: nanotoxicology and beyond. Toxicological Sciences, 2011,120(1):S109-S129.
doi: 10.1093/toxsci/kfq372 pmid: 21177774
[36] Hamad-Schifferli, Kimberly . Exploiting the novel properties of protein coronas: emerging applications in nanomedicine. Nanomedicine, 2015,10(10):1663-1674.
doi: 10.2217/nnm.15.6 pmid: 26008198
[37] Lesniak A, Salvati A, Santos-Martinez M J , et al. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. Journal of the American Chemical Society, 2013,135(4):1438-1444.
doi: 10.1021/ja309812z pmid: 23301582
[38] Ding F, Radic S, Chen R , et al. Direct observation of a single nanoparticle-ubiquitin corona formation. Nanoscale, 2013,5(19):9162-9169.
doi: 10.1039/c3nr02147e
[39] Podila R, Chen R, Ke P C , et al. Effects of surface functional groups on the formation of nanoparticle-protein corona. Applied Physics Letters, 2012,101(26):263701.
doi: 10.1063/1.4772509 pmid: 23341687
[40] Herda L M, Hristov D R, Lo Giudice M C , et al. Mapping of molecular structure of the nanoscale surface in bionanoparticles. Journal of the American Chemical Society, 2017,139(1):111-114.
doi: 10.1021/jacs.6b12297 pmid: 28005336
[41] Kelly P M, Aberg C, Polo E , et al. Mapping protein binding sites on the biomolecular corona of nanoparticles. Nature Nanotechnology, 2015,10(5):472-479.
doi: 10.1038/nnano.2015.47 pmid: 25822932
[42] Casals E, Puntes, Víctor F . Inorganic nanoparticle biomolecular corona: formation, evolution and biological impact. Nanomedicine, 2012,7(12):1917-1930.
doi: 10.2217/NNM.12.169
[43] Lesniak A, Salvati A, Santos-Martinez M J , et al. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. Journal of the American Chemical Society, 2013,135(4):1438-1444.
doi: 10.1021/ja309812z pmid: 23301582
[44] Treuel L, Brandholt S, Maffre P , et al. Impact of protein modification on the protein corona on nanoparticles and nanoparticle-cell interactions. ACS Nano, 2014,8(1):503-513.
doi: 10.1021/nn405019v pmid: 24377255
[45] Ali P, Mohammad A . Current opinion on nanotoxicology. Daru Journal of Faculty of Pharmacy Tehran University of Medical Sciences, 2012,20(1):95.
[46] Ge C, Du J, Zhao L , et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proceedings of the National Academy of Sciences, 2011,108(41):16968-16973.
[47] Hu W, Peng C, Lv M , et al. Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS NANO, 2011,5(5):3693-3700.
doi: 10.1021/nn200021j pmid: 21500856
[48] Peng Q, Zhang S, Yang Q , et al. Preformed albumin corona, a protective coating for nanoparticles based drug delivery system. Biomaterials, 2013,34(33):8521-8530.
doi: 10.1016/j.biomaterials.2013.07.102
[49] Treuel L, Brandholt S, Maffre P , et al. Impact of protein modification on the protein corona on nanoparticles and nanoparticle-cell interactions. ACS Nano, 2014,8(1):503-513.
doi: 10.1021/nn405019v pmid: 24377255
[50] Hong N V, Beom-Jin L . Protein corona: a new approach for nanomedicine design. International Journal of Nanomedicine, 2017,12:3137-3151.
doi: 10.2147/IJN.S129300 pmid: 28458536
[51] Cabaleiro-Lago C, Szczepankiewicz O, Linse S . The effect of nanoparticles on amyloid aggregation depends on the protein stability and intrinsic aggregation rate. Langmuir, 2012,28(3):1852-1857.
doi: 10.1021/la203078w pmid: 22168533
[52] Shang L, Wang Y, Jiang J , et al. PH-dependent protein conformational changes in albumin: gold nanoparticle bioconjugates: a spectroscopic study. Langmuir, 2007,23(5):2714-2721.
doi: 10.1021/la062064e pmid: 17249699
[53] Kurylowicz M, Paulin H, Mogyoros J , et al. The effect of nanoscale surface curvature on the oligomerization of surface-bound proteins. Journal of The Royal Society Interface, 2014,11(94):20130818-20130818.
doi: 10.1098/rsif.2013.0818 pmid: 24573329
[54] Cabaleiro-Lago C, Quinlan-Pluck F, Lynch I , et al. Inhibition of amyloid β protein fibrillation by polymeric nanoparticles. Journal of the American Chemical Society, 2008,130(46):15437-15443.
doi: 10.1021/ja8041806 pmid: 18954050
[55] Fleischer C C, Payne C K . Nanoparticle-cell interactions: molecular structure of the protein corona and cellular outcomes. Accounts of Chemical Research, 2014,47(8):2651-2659.
doi: 10.1021/ar500190q
[56] Dawson K A, Salvati A, Lynch I . Nanotoxicology: nanoparticles reconstruct lipids. Nature Nanotechnology, 2009,4(2):84-85.
doi: 10.1038/nnano.2008.426 pmid: 19197306
[57] Wei Q, Becherer T, Angioletti-Uberti S , et al. Protein interactions with polymer coatings and biomaterials. Angewandte Chemie International Edition, 2014,53(31):8004-8031.
doi: 10.1002/anie.201400546 pmid: 25045074
[58] Chapman R G, Ostuni E, Takayama S , et al. Surveying for surfaces that resist the adsorption of proteins. Journal of the American Chemical Society, 2000,122(34):8303-8304.
doi: 10.1021/ja000774f
[59] Ostuni E, Chapman R G, Holmlin R E , et al. A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir, 2001,17(18):5605-5620.
doi: 10.1021/la010384m
[60] Kingshott P, Thissen H, Griesser H J . Effects of cloud-point grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins. Biomaterials, 2002,23(9):2043-2056.
doi: 10.1016/S0142-9612(01)00334-9
[61] Tiller K E, Tessier P M . Advances in antibody design. Annual Review of Biomedical Engineering, 2015,17(1):191-216.
doi: 10.1146/annurev-bioeng-071114-040733
[62] Schottler S, Becker G, Winzen S , et al. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nature Nanotechnology, 2016,11(4):372-377.
doi: 10.1038/nnano.2015.330 pmid: 26878141
[63] Walkey C D, Olsen J B, Guo H , et al. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. Journal of the American Chemical Society, 2012,134(4):2139-2147.
doi: 10.1021/ja2084338
[64] Clemments A M, Muniesa C, Landry C C , et al. Effect of surface properties in protein corona development on mesoporous silica nanoparticles. RSC Advances, 2014,4(55):29134-29138.
doi: 10.1039/c4ra03277b
[65] Simonelli F, Rossi G, Monticelli L . Role of ligand conformation on nanoparticle-protein interactions. Journal of Physical Chemistry B, 2019,123(8):1764-1769.
doi: 10.1021/acs.jpcb.8b11204 pmid: 30698447
[66] Grunér M S, Kauscher U, Linder M B , et al. An environmental route of exposure affects the formation of nanoparticle coronas in blood plasma. Journal of Proteomics, 2016,137(15):52-58.
doi: 10.1016/j.jprot.2015.10.028 pmid: 26546559
[67] Yeo E L L, Thong S P, Soo K C , et al. Protein corona in drug delivery for multimodal cancer therapy in vivo. Nanoscale, 2018,10(5):2461-2472.
doi: 10.1039/c7nr08509e pmid: 29336463
[1] 杨威,宋方祥,王帅,张黎,王红霞,李焱. 药物输送系统中Janus纳米粒子的制备及应用 *[J]. 中国生物工程杂志, 2020, 40(7): 70-81.
[2] 潘晓倩,熊向源,龚妍春,李资玲,李玉萍. 口服抗癌药物纳米载体的研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 65-73.
[3] 赵悦,吴昊,乔建军. 细菌细胞壁生长调控机制研究进展 *[J]. 中国生物工程杂志, 2018, 38(8): 92-99.
[4] 于丽丽,胡博,李雪,朱乃硕. 乙肝病毒X与Tab1蛋白相互作用的体内外验证 *[J]. 中国生物工程杂志, 2018, 38(7): 1-6.
[5] 孟坤, 何庆瑜, 王通, 卢少华. 基于C6流式细胞仪平台应用FRET技术在活细胞中研究蛋白质相互作用[J]. 中国生物工程杂志, 2017, 37(5): 45-51.
[6] 吴芹, 胡蝶, 李雪晴, 袁风娇, 李剑芳, 邬敏辰. Y13F定点突变改良米曲霉中温木聚糖酶的耐热性[J]. 中国生物工程杂志, 2016, 36(12): 36-41.
[7] 张晨晨, 孟志忠, 陆远芳, 陈新, 李杉. 脱氮硫杆菌硫化合物载体SoxYZ蛋白的同源建模和结构分析[J]. 中国生物工程杂志, 2015, 35(7): 68-75.
[8] 黄欣媛, 范红波, 邹礼平. 蛋白片段互补分析技术研究进展[J]. 中国生物工程杂志, 2013, 33(11): 99-105.
[9] 沈梓粤, 吕哲, 秦宗华, 李任强. 利用牵出技术分析与虾主要过敏原相互作用的蛋白质[J]. 中国生物工程杂志, 2012, 32(11): 81-85.
[10] 沈梓粤, 吕哲, 秦宗华, 李任强. 利用牵出技术分析与虾主要过敏原相互作用的蛋白质[J]. 中国生物工程杂志, 2012, 32(11): 81-85.
[11] 郭芬, 林丕容, 李月琴, 苏宪礼, 王丁丁, 周天鸿. BRPF1及其新型转录本BRPF2与RHOX5蛋白间的相互作用[J]. 中国生物工程杂志, 2012, 32(09): 15-21.
[12] 陈思群, 孙自才, 陈建军, 陈晓晖. 糖-蛋白质相互作用在酶固定及蛋白质识别与分离中的应用[J]. 中国生物工程杂志, 2012, 32(04): 83-88.
[13] 吴丽, 杨成红, 邓思思, 周宇波, 钱旻, 臧奕. 应用酵母双杂交系统筛选AMPK相互作用蛋白[J]. 中国生物工程杂志, 2012, 32(02): 1-7.
[14] 王萍, 毛红菊. 纳米材料在生物医学检测中的应用[J]. 中国生物工程杂志, 2011, 31(9): 88-95.
[15] 黎玉叶, 李星星, 孙双双, 邹正渝, 张昀源, 段亮, 叶立伟, 武睿, 杨霞, 何通川, 周兰. S100A6蛋白对细胞中β-catenin水平的影响及可能机制[J]. 中国生物工程杂志, 2011, 31(11): 18-23.