乙肝病毒X与Tab1蛋白相互作用的体内外验证 *

于丽丽,胡博,李雪,朱乃硕

中国生物工程杂志 ›› 2018, Vol. 38 ›› Issue (7) : 1-6.

PDF(621 KB)
PDF(621 KB)
中国生物工程杂志 ›› 2018, Vol. 38 ›› Issue (7) : 1-6. DOI: 10.13523/j.cb.20180701
研究报告

乙肝病毒X与Tab1蛋白相互作用的体内外验证 *

作者信息 +

Identification of Protein-protein Interaction of Hepatitis B Virus X Protein and Tab1 in Vivo and in Vitro

Author information +
文章历史 +

摘要

目的:借助实验室前期质谱分析技术和数据分析研究基础,采用免疫共沉淀(Co-IP)和蛋白质沉降实验(GST pull-down)验证HBV X蛋白与Tab1蛋白的相互作用,为进一步研究HBx在HBV慢性感染致癌机制中的作用提供一定的实验依据。方法:成功构建pGEX-2TK-GST-HBx质粒,对GST-HBx融合蛋白进行诱导表达,与GST-beads结合孵育,构建pcDNA3.1/myc-His(-)B-Tab1,转染293T细胞使其表达,然后GST pull-down体外试验验证二者的相互作用;构建pcDNA3.1/myc-His(-)B-Tab1和pcDNA3.1-3×flag-HBx真核表达质粒,共转染293T和HepG2细胞使其表达,通过Co-IP实验验证抗Myc抗体可以将HBx从细胞裂解液中沉淀下来,证实了它们在两种细胞系中存在相互作用。结果:显示了HBx和Tab1在体内外条件下能够发生相互作用,为进一步明确HBV X蛋白功能及作用机制奠定基础。

Abstract

With the help of analysis of mass spectrometry and data analysis according to the preliminary laboratory basic research, Co-IP and GST pull-down methods was used to prove the interaction of HBV X protein with Tab1. In order to study the carcinogenic mechanism of HBx protein, Some experimental evidence for further study of the role of HBx in the carcinogenic mechanism of HBV chronic infection were provided. pGEX-2TK-GST-HBx plasmid was successfully constructed, GST-HBx fusion protein was induced and incubated with GST-beads. pcDNA3.1/myc-His (-) B-Tab1 plasmid was constructed,then was transfected 293T cells to express Myc-Tab1. Finally the interaction of GST-HBx and Myc-Tab1 was verified in GST pull-down test. Moreover, the eukaryotic expression plasmids including pcDNA3.1/myc-His (-) B-Tab1 and pcDNA3.1-3×flag-HBx were successfully constructed, then were co-transfected into human embryonic kideny 293T cells and HepG2 cells to express fusion protein, further Co-IP test was demonstrated that the anti-Myc antibody could precipitate HBx from the cell lysate, and confirmed their intracellular interaction in two human cell lines. In conclusion, all results show that HBx and Tab1 could interact in vitro and in vivo, also established foundation to reveal the function and mechanism of HBV X protein.

关键词

HBV X蛋白 / Tab1 / 免疫共沉淀实验 / GST沉降实验 / 相互作用

Key words

HBV X protein / Tab1 / Co-IP / GST pull-down / Interaction

引用本文

导出引用
于丽丽, 胡博, 李雪, . 乙肝病毒X与Tab1蛋白相互作用的体内外验证 *[J]. 中国生物工程杂志, 2018, 38(7): 1-6 https://doi.org/10.13523/j.cb.20180701
Li-li YU, Bo HU, Xue LI, et al. Identification of Protein-protein Interaction of Hepatitis B Virus X Protein and Tab1 in Vivo and in Vitro[J]. China Biotechnology, 2018, 38(7): 1-6 https://doi.org/10.13523/j.cb.20180701
中图分类号: Q816   
乙型肝炎病毒(HBV)可以持续感染肝细胞,是严重危害人身体健康的病毒,其感染能引起急慢性乙型肝炎、肝硬化,甚至是肝癌。既往研究也表明慢性HBV感染是导致原发性肝癌的主要因素[1],约80%的原发性肝细胞癌(hepatic celluler cancer,HCC)与HBV感染有关[2],生物体感染HBV后可以通过复杂的机制导致HCC的发生和发展[3,4,5]。作为HBV基因组中最小的开放阅读框的HBV X(HBx)蛋白,由154个氨基酸、2个功能结构域[6]组成,在HBV相关性肝癌的发生发展中具有重要的作用。HBx可以作为反式激活作用因子或原癌基因来促进肿瘤的发生发展[7,8],同时研究也表明HBx蛋白在HBV的感染、细胞周期变化与凋亡、肝癌发生发展过程中与宿主内的多种蛋白质发生相互作用[9]。因此,HBx蛋白被认为是HBV致病机制过程中的一个重要的多功能效应因子[10]
Tab1是一种重要的构架蛋白,最初是因其能够与TAK1蛋白相互作用被发现命名[11]。人Tab1蛋白由504个氨基酸组成,主要功能是能募集其他蛋白质形成复合物,但相应蛋白质的活化却不需依靠Tab1的催化[12]。Tab1可以与TAK1结合形成复合物,并导致TAK1自我磷酸化,研究发现TAK1的激酶活性无论是在酵母中还是在哺乳动物中都与Tab1相关[12]。TAK1的活化可以激化细胞内多种信号通路,如NF-κB、MAP[13]等,这些信号通路与人类疾病的关系也日益受到研究关注。
目前HBx作为一种重要的转录激活作用分子,介导了多种信号转导通路,包括炎症、免疫反应、细胞凋亡等生理病理过程以及细胞周期调控与细胞分化等过程。但是目前绝大多数的研究报道都是围绕着HBx蛋白对胞内多条信号通路的间接影响,对其直接作用的靶蛋白报道还是比较少。因此针对HBV感染致病的分子机制研究一直以来从未间断过。本实验结合实验室前期质谱大数据基础,旨在用免疫共沉淀和蛋白质沉降实验方法来验证HBx蛋白与Tab1在体内外的相互作用,为接下来探讨HBx对HBV感染后细胞信号通路影响的分子机制奠定基础。

1 材料与方法

1.1 材料和试剂

大肠杆菌DH5α和BL21、293T细胞、HepG2细胞、真核表达质粒pcDNA3.1-3×flag-HBx、细胞cDNA模板、pcDNA3.1/myc-His(-)B、pGEX-2TK均为本室保存。2×hlingene Pfu PCR masterMix(上海惠凌生物),EcoRⅠ、Sma I、BamHⅠ(TaKaRa公司),T4 DNA连接酶(Bio labs, New Eng land),无内毒素质粒提取试剂盒和凝胶回收试剂盒(北京天根公司),DNA转染试剂盒(Biotool公司),ECL显色试剂盒(苏州新赛美生物技术有限公司),Anti-flag Beads(Sigma公司),Glutathione-Sepharose 4B (美国GE Healthcare公司),抗Myc标签的多克隆抗体(Sigma公司),HRP标记山羊抗兔IgG(Cell Signaling)等均为商业产品;DNA Marker(MD2K, MD15K)(北京全式金生物公司),氨苄青霉素(Amp)、琼脂糖及其他常用化学试剂均为国产分析纯;PCR引物合成工作由苏州金唯智生物有限公司完成,测序工作由上海睿迪生物科技有限公司完成。

1.2 方 法

1.2.1 细胞培养 293T细胞和HepG2细胞在体积分数为10%胎牛血清的DMEM培养基中,于37℃、体积分数为5% CO2饱和湿度培养的细胞二氧化碳培养箱中培养,用质量分数为0.25%的胰酶常规消化传代。
1.2.2 重组真核表达质粒pcDNA3.1/myc-His(-)B-Tab1的构建 根据空载体pcDNA3.1/myc-His(-)B的多克隆位点和Tab1全长编码序列设计引物,Tab1上游引物:5'-GGAATTCCGCAGGGGTTCCTCCAAG-3';下游引物:5'-CCCAAGCTTGGCGGTGCTGTCACCACGCTCTG-3'。上、下游引物分别引入EcoR I和Hind III酶切位点,以293T cDNA文库为模板克隆Tab1全长序列,取PCR扩增产物用1%的琼脂糖凝胶电泳检测并回收纯化目的片段,EcoR I和Hind III双酶切空载和Tab1,回收的Tab1定向克隆到空载中,转化大肠杆菌感受态细胞DH5α,经平板培养,随机挑取单克隆进行扩大培养。最后提取质粒进行双酶切鉴定和菌落PCR鉴定,将初步验证为含有阳性转化子的单菌落送公司测序,测序结果与GenBank中公布的序列对比,获得重组真核表达质粒,命名为pcDNA3.1/myc-His(-)B-Tab1。
1.2.3 重组原核表达质粒pGEX-2TK-GST-HBx的构建 根据空载体pGEX-2TK-GST的多克隆位点和HBx全长编码序列设计引物,HBx上游引物:5'-TCCCCCGGGAATGGCTGCTCGGGTGTGCTGC-3';下游引物:5'-CGAATTCTTAGGCAGAGGTGAAAAAGT-3'。上、下游引物分别引入Sma I和EcoR I酶切位点,以本实验室保存的pcDNA3.1-3×flag-HBx为模板克隆HBx全长序列,取PCR扩增产物用1%的琼脂糖凝胶电泳检测并回收纯化目的片段,EcoR I 和Sam I双酶切空载和HBx,回收的HBx定向克隆到空载中,转化大肠杆菌感受态细胞DH5α,经平板培养,随机挑取单克隆进行扩大培养。最后提取质粒进行双酶切鉴定和菌落PCR鉴定,将初步验证为含有阳性转化子的单菌落送公司测序,测序结果与GenBank中公布的序列对比,获得重组真核表达质粒pGEX-2TK-GST-HBx。
1.2.4 GST-HBx融合蛋白的诱导表达及纯化 将pGEX-2TK-GST-HBx及空载体pGEX-2TK分别转化大肠杆菌感受态BL21,挑单克隆于3ml LB培养液中培养过夜,以10%接种量接种于200ml LB中,37℃、220r/min培养约5h,至OD600为0.6~0.8,加入诱导剂IPTG(终浓度0.5mmol/L),25℃、160r/min过夜诱导。诱导结束后以4℃、5 000g离心10min后弃上清,收集菌体。取适量体菌,加入细胞裂解液,充分重悬,超声破碎后,4℃、12 000r/min离心20min,取上清换新EP管再次以12 000r/min离心20min,直到没有菌体沉淀为止,轻轻吸取上清液。按Glutathione-Sepharose 4B操作说明书进行蛋白质纯化,获得结合有GST-HBx融合蛋白或GST蛋白的Beads,4℃短时间放置,待与转染了pcDNA3.1/myc-His(-)B-Tab1的293T细胞裂解液共孵育。
1.2.5 Myc-Tab1与Flag-HBx免疫共沉淀(Co-IP) 用于转染的pcDNA3.1/myc-His(-)B-Tab1和pcDNA3.1-3×flag-HBx真核表达质粒及空载体用无内毒素小提中量质粒提取试剂盒进行提取,具体操作步骤按照试剂盒内说明书进行。pcDNA3.1-3×flag-HBx和pcDNA3.1空载分别与pcDNA3.1/myc-His(-)B-Tab1共转染293T细胞及HepG2两种细胞系,转染24~36h后,使用碧云天Western及IP细胞裂解液裂解细胞,收获细胞总蛋白质。取80μl与20μl 5×SDS-PAGE蛋白质上样缓冲液100℃煮沸10min,此样品作为Western blot的对照(称为Input)。剩余细胞裂解液与预先洗涤处理好的Anti-flag Beads 4℃共孵育4h,共孵育后放置在磁力架上弃去上清液,PBS(预先加入蛋白酶抑制剂)洗涤磁珠2遍,每遍5min。洗过的beads重悬于50μl 1×SDS-PAGE蛋白质上样缓冲液,100℃煮10min,放置在磁力架上保留上清液称为IP。IP上清液及预留的Input同时进行SDS-PAGE,电泳结束后将蛋白质电转印至硝酸纤维素膜,然后进行Western blot,细胞裂解液及IP上清液均同时用抗Myc标签抗体(兔源)检测。
1.2.6 Myc-Tab1与GST-HBx的蛋白质沉降实验(GST pull-down) 将吸附有GST-HBx融合蛋白和GST的Glutathione-Sepharose 4B beads 20μl加入离心管中,用PBS洗涤3次后加入pcDNA3.1/myc-His(-)B-Tab1真核表达的293T细胞裂解液,4℃结合4h后,3 000r/min,4℃离心5min,弃上清液。再用裂解液洗Sepharose珠子4次,每次10min,吸净上清液。洗脱完毕的Sepharose beads加入1×SDS-PAGE上样缓冲液,煮沸10min,电泳后用抗Myc标签抗体进行Western blot分析,在此实验中GST蛋白组做为阴性对照组。

2 结果与分析

2.1 pcDNA3.1/myc-His(-)B-Tab1重组质粒构建及表达鉴定

以实验室保存的293T cDNA为模板,PCR扩增获得Tab1全长编码序列(1 515个核苷酸),经1%琼脂糖凝胶电泳检测,DNA片段大小与预期的一致(图1)。将PCR产物酶切插入到载体中,重组质粒pcDNA3.1/myc-His(-)B-Tab1双酶切鉴定(EcoR I和Hind III)及菌落PCR鉴定结果(图2)都产生与目的条带大小相符的片段。测序结果表明,重组质粒中插入的序列完全正确。构建成功的质粒转染293T细胞对是否能表达目的片段进行鉴定,用抗Myc抗体进行Western blot检测,结果如图3所示,表明构建的质粒能正常表达目的片段大小相符的蛋白质。
图1 Tab1的PCR产物

Fig.1 PCR products of human Tab1

M1:Trans 15 000 DNA marker,Tab1 of PCR;M2: Trans 2 000 DNA marker

Full size|PPT slide

图2 pcDNA3.1/myc-His(-)B-Tab1的酶切鉴定和菌落PCR鉴定

Fig.2 Restriction enzyme digestion and colony PCR identification of pcDNA3.1/myc-His(-)B-Tab1

(a)Double enzyme digestion identification M1: Trans 15 000 DNA marker; 1:Empty vector;2: Double digestion products;M2:Trans 2 000 DNA marker (b)Colony PCR identification M1:Trans 15 000 DNA marker; Clone 1-5: Selecting five monoclonal colonies;M2:Trans 2 000 DNA marker

Full size|PPT slide

图3 pcDNA3.1/myc-His(-)B-Tab1的表达鉴定

Fig.3 Expression identification of pcDNA3.1/myc-His(-)B-Tab1

Full size|PPT slide

2.2 pGEX-2TK-GST-HBx重组质粒构建

以实验室保存的pcDNA3.1-3×flag-HBx为模板,PCR扩增获得HBx带有酶切位点的全长编码序列,经1%琼脂糖凝胶电泳检测,DNA片段大小与预期的一致(图4)。将PCR产物酶切插入到载体中,重组质粒pGEX-2TK-GST-HBx双酶切鉴定(Sma I和EcoR I)及菌落PCR鉴定结果(图5)都产生与目的条带大小相符的片段。测序结果表明,重组质粒中插入的序列完全正确。
图4 HBx的PCR产物

Fig.4 PCR products of HBx

M1:Trans 2 000 DNA marker; HBx: Products of PCR

Full size|PPT slide

图5 pGEX-2TK-GST-HBx的酶切鉴定和菌落PCR鉴定

Fig.5 Restriction enzyme digestion and colony PCR identification of pGEX-2TK-GST-HBx

(a)Double enzyme digestion identification M1: Trans 15 000 DNA marker; 1:Empty vector;2: Double digestion products;M2:Trans 2 000 DNA marker (b)Colony PCR identification M1: Trans 15 000 DNA marker; Clone 1-6: Selecting five monoclonal colonies;M2:Trans 2 000 DNA marker

Full size|PPT slide

2.3 GST-HBx 融合蛋白的诱导表达及纯化

pGEX-2TK-GST-HBx重组阳性质粒转化BL21菌,应用终浓度为0.5mmol/L的IPTG,25℃诱导表达过夜,取细菌总蛋白质分析诱导表达情况可见与目的蛋白大小一致的条带(图6),诱导表达的菌超声后直接取上清液挂Beads,挂Beads后取部分Beads与1×SDS-PAGE蛋白质上样缓冲液100℃、煮10min后,SDS-PAGE检测挂Beads结果,检测结果(图7)表明,表达的GST-HBx分子质量大小一致,且可以在上清液中获得足够的可溶表达产物,但是融合蛋白存在着降解情况。处理好的Beads短时间放置在4℃备用,待与转染pcDNA3.1/myc-His(-)B-Tab1的293T细胞的Myc-Tab1细胞裂解液共孵育。
图6 GST-HBx融合蛋白的诱导表达

Fig.6 IPTG Induction of GST-HBx fusion protein expression

M:Protein marker; 1-3:IPTG induction of GST-HBx; 4-6: IPTG induction of GST

Full size|PPT slide

图7 琼脂糖Beads纯化GST-HBx融合蛋白的蛋白质电泳检测

Fig.7 SDS-PAGE test of GST-HBx fusion protein purification by Agarose Beads

M:Protein marker; 1: GST-HBx; 2: GST

Full size|PPT slide

2.4 Myc-Tab1与Flag-HBx免疫共沉淀(Co-IP)试验

将带有Myc标签的Tab1和带有Flag标签的HBx质粒共转染293T细胞及HepG2细胞,实验组,共转染pcDNA3.1-3×flag-HBx和pcDNA3.1/myc-His(-)B-Tab1细胞裂解液;对照组,共转染pcDNA3.1-3×flag空载/pcDNA3.1-myc-His(-)B-Tab1细胞裂解液。用抗FLAG抗体(鼠源)免疫沉淀(IP)Flag-HBx,用抗Myc抗体(兔源)做Western blot分析,检测免疫沉淀复合物中是否含有Tab1。在293T细胞中进行的Co-IP实验结果表明,用抗FLAG抗体可以将Myc-Tab1从共转pcDNA3.1-3×flag-HBx和pcDNA3.1/myc-His(-)B-Tab1的细胞裂解液中沉淀下来,用抗Myc抗体可检测到Myc-Tab1,而共转染pcDNA3.1-3×flag空载体和pcDNA3.1-myc-His(-)B-Tab1的IP裂解液用抗Myc抗体检测无信号(图8)。结果表明Tab1可以与HBx结合,而不与FlAG标签结合,说明Tab1和HBx在体内存在特异性的相互作用。同样的方法在HepG2肝癌细胞系进行的Co-IP实验结果也表明Tab1可以与HBx结合,而不与FlAG标签结合(图9),说明Tab1和HBx在HepG2细胞体内也存在相互作用。
图8 Tab1与HBx在293T细胞内的相互作用

Fig.8 Interaction between Tab1 and HBx in 293T cells by Co-IP

Full size|PPT slide

图9 Tab1与HBx在HepG2细胞内的相互作用

Fig.9 Interaction between Tab1 and HBx in HepG2 cells by Co-IP

Full size|PPT slide

2.5 Myc-Tab1与GST-HBx的蛋白质沉降(GST pull-down)实验

将预先结合有GST-HBx蛋白的Beads及GST蛋白分别与真核表达的Myc-Tab1的细胞裂解液混合孵育后进行GST pull-down实验,同时以GST作阴性对照。结果表明(图10),Myc-Tab1可与GST-HBx相互作用,而不与GST结合,说明Tab1在体外能特异性结合HBx。
图10 Tab1与HBx在体外的相互作用

Fig.10 Interaction between Tab1 and HBx in vitro

Full size|PPT slide

3 讨 论

HBx被认为是HBV致病机制中的一个重要多功能因子。目前针对HBx体内外研究表明,HBx在控制细胞增殖和活性中发挥了重要作用[14,15,16],并且在HBV感染导致HCC的发生发展过程中发挥了直接促癌作用[17]。例如,HBx可对多种癌基因具有反式激活作用,其中包括c-mycrasc-fos等,还可以调节多种入核转录因子如NF-κB、AP-1、c-EPB等,进而对肝细胞的的增殖、转化、凋亡多种信号级联通路产生多环节的刺激性影响,如PI3K/AKT、JAK、STAT、MAPK[18]等信号通路。这些通路又相互影响形成一个极其复杂的信号网络,使HBx对肝细胞的影响逐级放大。
关于Tab1的研究,最初是作为TAK1的相互作用蛋白被发现的,Tab1能直接与TAK1互作后激活IKK,从而引起NF-κB的活化;换句话说,Tab1与TAK1相结合并使其活化。同时研究还发现Tab1的羧基末端有个经过修饰的保守区域,使它能够结合并激活属于MAPKKK家族的TAK1,通过经典的三级激酶途径调节p38等的活性;同样,这个保守羧基末端也能帮助Tab1直接与MAPK家族的p38α结合,导致p38α的自我磷酸化,从而使其激活[19,20]。虽然目前对HBx信号通路的研究也比较多,但是对于HBx具体如何介导信号转导的深入研究还比较少,特别是关于HBx在信号转导通路中直接相互作用分子的研究还比较少,结合目前对HBx及Tab1的功能调节作用研究,猜测Tab1在HBx介导HCC发生发展中的相关信号通路有重要的研究意义,对进一步探讨HBx在HCC发生发展中的作用及其分子机制有重大发现意义。
综上所述,本文利用Co-IP和GST pull down在体内外对HBx和Tab1相互作用进行进一步验证。首先构建了HBx的原核和真核表达质粒、Tab1真核表达质粒,然后通过蛋白质沉降实验,证明了它们可以在体外相互作用;并进一步将HBx和Tab1共转染293T细胞和HepG2肝癌细胞,进行免疫共沉淀实验(Co-IP),结果显示Tab1在体内环境下也可以有效地结合HBx,进一步说明了它们之间相互作用的可靠性。根据实验结果推测,HBx在HBV感染导致的信号转导中,可能是通过直接结合Tab1来激活相关的信号通路,这些研究结果将进一步探讨HBx与Tab1参与的信号通路的功能提供实验依据。

参考文献

[1]
Szmuness W . Hepatocellular carcinoma and the hepatitis B virus: evidence for a causal association. Prog Med Virol, 1978,24:40-69.
[2]
Cromlish J A . Hepatitis B virus induced hepatocellular carcinoma:possible roles for HBx. Trends in Microbiology, 1996,4(7):270-274.
The hepatitis B virus-encoded protein, HBx, may contribute to carcinogenesis by perturbing cell growth and differentiation. There is some evidence indicating that HBx represses the nuclear import of the tumor repressor p53 and p53-dependent trans -activation and that HBx activates members of the basic region-leucine zipper (bZIP) family.
[3]
Levrero M, Zucman-Rossi J . Mechanisms of HBV-induced hepatocellular carcinoma. J Hepatol, 2016,64(1 Suppl):S84-S101.
Hepatitis B virus (HBV) contributes to hepatocellular carcinoma (HCC) development through direct and indirect mechanisms. HBV DNA integration into the host genome occurs at early steps of clonal tumor expansion and induces both genomic instability and direct insertional mutagenesis of diverse cancer-related genes. Prolonged expression of the viral regulatory protein HBx and/or altered versions of the preS/S envelope proteins dysregulates cell transcription and proliferation control and sensitizes liver cells to carcinogenic factors. Accumulation of preS1 large envelope proteins and/or preS2/S mutant proteins activates the unfold proteins response, that can contribute to hepatocyte transformation. Epigenetic changes targeting the expression of tumor suppressor genes occur early in the development of HCC. A major role is played by the HBV protein, HBx, which is recruited on cellular chromatin and modulates chromatin dynamics at specific gene loci. Compared with tumors associated with other risk factors, HBV-related tumors have a higher rate of chromosomal alterations, p53 inactivation by mutations and overexpression of fetal liver/hepatic progenitor cells genes. The WNT/ -catenin pathway is also often activated but HBV-related tumors display a low rate of activating -catenin mutations. HBV-related HCCs may arise on non-cirrhotic livers, further supporting the notion that HBV plays a direct role in liver transformation by triggering both common and etiology specific oncogenic pathways in addition to stimulating the host immune response and driving liver chronic necro-inflammation.
[4]
Tian Y, Yang W, Song J, et al. Hepatitis B virus X protein-induced aberrant epigenetic modifications contributing to human hepatocellular carcinoma pathogenesis. Mol Cell Biol, 2013,33(15):2810-2816.
[5]
Pogribny I P, Rusyn I . Role of epigenetic aberrations in the development and progression of human hepatocellular carcinoma. Cancer Lett, 2014,342(2):223-230.
[6]
Gong D Y, Chen E Q, Huang F J, et al. Role and functional domain of hepatitis B virus X protein in regulating HBV transcription and replication in vitro and in vivo. Viruses, 2013,5(5):1261-1271.
[7]
Yu F L, Liu H J, Lee J W, et al. Hepatitis B virus X protein promotes cell migration by inducing matrix metalloproteinase-3. J Hepatol, 2005,42(4):520-527.
Abstract BACKGROUND/AIMS: Hepatitis B virus (HBV), a major causative agent of hepatocellular carcinoma (HCC), encodes an oncogenic X protein (HBx) that transcriptionally activates multiple viral and cellular promoters. How this regulation influences HCC is unclear. METHODS: Global gene expression in HBx-expressing and non-expressing hepatoma cells was analyzed using cDNA microarrays. RESULTS: Genes that were markedly up- or down-regulated in the presence of HBx included those involved in signal transduction, metabolism, apoptosis, cytokine production, cell cycle, cell adhesion and oncogenesis. Other genes of ill-defined function were also affected. Trans-activation proficient HBx up-regulated the transcription, translation and secretion of matrix metalloproteinase-3 (MMP-3), manifest as a cell migratory phenotype. This HBx effect was abrogated in the presence of a MMP-3 specific peptide inhibitor. CONCLUSIONS: HBx exerts selective transcriptional control in hepatoma cells and induces cellular migration through the activation of MMP-3.
[8]
Wang Y, Cui F, Lv Y, et al. HBs Ag and HBx knocked into the p21 locus causes hepatocellular carcinoma in mice. Hepatology, 2004,39(2):318-324.
Abstract Hepatocellular carcinoma (HCC) affects males in a significantly higher proportion than females and is one of the human cancers etiologically related to viral factors. Many studies provide strong evidence of the direct role that hepatitis B virus (HBV) plays in hepatic carcinogenesis, but the functions of HBV surface antigen ( HBsAg ) and X protein ( HBx ) in hepatocarcinogenesis through direct or indirect mechanisms are still being debated. We generated two HBV gene knock-in transgenic mouse lines by homologous recombination. HBsAg and HBx genes were integrated into the mouse p21 locus. Both male and female p21-HBx transgenic mice developed HCC after the age of 18 months; however, male p21-HBsAg transgenic mice began to develop HCC 3 months earlier. The expression of a number of genes related to metabolism and genomic instability largely resembled the molecular changes during the development of HCC in humans. ER- (estrogen receptor- ) was extremely up-regulated only in tumor tissues of male p21-HBsAg mice, providing genetic evidence that HBsAg might be the major risk factor affecting the gender difference in the causes of HCC. In conclusion, these mice might serve as good models for studying the different roles of HBsAg and HBx in early events of HBV-related hepatocarcinogenesis. (H EPATOLOGY 2004;39:318 324.)
[9]
Bouchard M J, Schneider R J . The enigmatic X gene of hepatitis B virus. J Virol, 2004,78(23):12725-12734.
Abstract With an estimate of 350 million people chronically infected with the hepatitis B virus (HBV) worldwide, it is critically important to understand how persistent HBV infection is maintained and linked to chronic hepatitis, cirrhosis, and de- velopment of liver cancer (hepatocellular carcinoma (HCC)) (39). This review will focus on the HBV nonstructural X pro- tein (HBx), a key regulatory protein of the virus that is at the intersection of HBV infection, replication, pathogenesis, and possibly carcinogenesis. The exact role of HBx in viral repli- cation has yet to be established, and its link to the progression of HCC remains controversial. Moreover, it is still unclear whether development of HCC associated with chronic infec- tion by HBV involves a viral protein, is solely the consequence of a continual inflammatory response to infection, or requires both. Understanding the role of HBx in HBV replication and its effect on hepatocyte biology may help resolve this issue. This review describes key studies and activities of HBx, often interpreted within the context of the viral life cycle. The reader is referred to several comprehensive reviews on the reported biological properties of HBx (3, 78, 137). HBV
[10]
Toh S T, Jin Y, Liu L, et al. Deep sequencing of the hepatitis B virus in hepatocellular carcinoma patients reveals enriched integration events, structural alterations and sequence variations. Carcinogenesis, 2013,34(4):787-798.
[11]
Schaeffer H J, Weber M J . Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol, 1999,19(4):2435-2444.
[12]
Shibuya H, Yamaguchi K, Shirakabe K, et al. Tab1: an activator of the TAK1 MAPKKK in TGF-β signal transduction. Science, 1996,272(5265):1179-1182.
Abstract Transforming growth factor-beta (TGF-beta) regulates many aspects of cellular function. A member of the mitogen-activated protein kinase kinase kinase (MAPKKK) family, TAK1, was previously identified as a mediator in the signaling pathway of TGF-beta superfamily members. The yeast two-hybrid system has now revealed two human proteins, termed TAB1 and TAB2 (for TAK1 binding protein), that interact with TAK1. TAB1 and TAK1 were co-immunoprecipitated from mammalian cells. Overproduction of TAB1 enhanced activity of the plasminogen activator inhibitor 1 gene promoter, which is regulated by TGF-beta, and increased the kinase activity of TAK1. TAB1 may function as an activator of the TAK1 MAPKKK in TGF-beta signal transduction.
[13]
Hirata Y, Takahashi M, Morishita T, et al. Post-translational modifications of the TAK1-TAB complex. Int J Mol Sci, 2017,18(1):205.
Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is a member of the mitogen-activated protein kinase kinase kinase (MAPKKK) family that is activated by growth factors and cytokines such as TGF-β, IL-1β, and TNF-α, and mediates a wide range of biological processes through activation of the nuclear factor-κB (NF-κB) and the mitogen-activated protein (MAP) kinase signaling pathways. It is well established that activation status of TAK1 is tightly regulated by forming a complex with its binding partners, TAK1-binding proteins (TAB1, TAB2, and TAB3). Interestingly, recent evidence indicates the importance of post-translational modifications (PTMs) of TAK1 and TABs in the regulation of TAK1 activation. To date, a number of PTMs of TAK1 and TABs have been revealed, and these PTMs appear to fine-tune and coordinate TAK1 activities depending on the cellular context. This review therefore focuses on recent advances in the understanding of the PTMs of the TAK1-TAB complex.
[14]
Brechot C, Thiers V, Kremsdorf D . Persistent hepatitis B virus infection in subjects without hepatitis B surface antigen: clinically significant or purely “occult”. Hepatology, 2001,34(1):194-203.
[15]
Klein N P, Bouchard M J, Wang L H . Src kinases involved in hepatitis B virus replication. EMBO J, 1999,18(18):5019-5027.
[16]
Yen T S . Hepadnaviral X protein: review of recent progress. J Biomed Sci, 1996,3(1):20-30.
In addition to coding for virion structural proteins and the reverse tanscriptase, all mammalian hepadnaviruses also contain an open-reading frame called X, because its function could not be fathomed from the deduced amino acid sequence. While it is now known that the woodchuck virus (and presumably the other hepadnaviruses, as well) cannot replicate in the animal host if the X gene is mutated, the exact function of the X protein in the viral life cycle is still unknown. In transient transfection studies, X protein has been shown to trans-activate a wide variety of promoters. The mechanism of this activation is also unclear, although there is accumulating evidence in favor of both a cytoplasmic effect involving signal transduction pathways, and a nuclear effect directly on the transcriptional machinery. It appears that the X protein is at least as complex as many of the other, better studied viral trans-activators, and may well yield new insights into mammalian cell functions in the future.
[17]
Bouchard M J, Schneider R J . The enigmatic X gene of hepatitis B virus. Journal of Virology, 2004,78(23):12725-12734.
Abstract With an estimate of 350 million people chronically infected with the hepatitis B virus (HBV) worldwide, it is critically important to understand how persistent HBV infection is maintained and linked to chronic hepatitis, cirrhosis, and de- velopment of liver cancer (hepatocellular carcinoma (HCC)) (39). This review will focus on the HBV nonstructural X pro- tein (HBx), a key regulatory protein of the virus that is at the intersection of HBV infection, replication, pathogenesis, and possibly carcinogenesis. The exact role of HBx in viral repli- cation has yet to be established, and its link to the progression of HCC remains controversial. Moreover, it is still unclear whether development of HCC associated with chronic infec- tion by HBV involves a viral protein, is solely the consequence of a continual inflammatory response to infection, or requires both. Understanding the role of HBx in HBV replication and its effect on hepatocyte biology may help resolve this issue. This review describes key studies and activities of HBx, often interpreted within the context of the viral life cycle. The reader is referred to several comprehensive reviews on the reported biological properties of HBx (3, 78, 137). HBV
[18]
Zhai B, Sun X Y . Mechanisms of resistance to sorafenib and the corresponding strategies in hepatocellular carcinoma. World J Hepatol, 2013,5(7):345-352.
[19]
Shibuya H, Yamaguchi K, Shirakabe K, et al. Tab1: an activator of the TAK1 MAPKKK in TGF-β signal transduction. Science, 1996,272(5265):1179-1182.
Abstract Transforming growth factor-beta (TGF-beta) regulates many aspects of cellular function. A member of the mitogen-activated protein kinase kinase kinase (MAPKKK) family, TAK1, was previously identified as a mediator in the signaling pathway of TGF-beta superfamily members. The yeast two-hybrid system has now revealed two human proteins, termed TAB1 and TAB2 (for TAK1 binding protein), that interact with TAK1. TAB1 and TAK1 were co-immunoprecipitated from mammalian cells. Overproduction of TAB1 enhanced activity of the plasminogen activator inhibitor 1 gene promoter, which is regulated by TGF-beta, and increased the kinase activity of TAK1. TAB1 may function as an activator of the TAK1 MAPKKK in TGF-beta signal transduction.
[20]
Kishimoto K . TAK1 mitogen-activated protein kinase kinase kinase is activated by autophosphorylation within its activation Loop. J Biol Chem, 2000,275(10):7359-7364.

脚注

The authors have declared that no competing interests exist.

作者已声明无竞争性利益关系。

基金

国家科技重大专项(2012ZX10002006-002-003)
国家自然科学基金(30571650)
国家自然科学基金(31370927)
国家863计划(2011AA02A114)
上海市科委科学基金(13431900602)

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(621 KB)

1250

Accesses

0

Citation

Detail

段落导航
相关文章

/