Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (5): 72-78    DOI: 10.13523/j.cb.2012041
综述     
受体酪氨酸激酶对自噬的调控及其研究进展*
董雪迎1,2,梁凯1,2,叶克应3,周策凡1,2,**(),唐景峰1,2,**()
1 湖北工业大学生物工程与食品学院 武汉 430068
2 湖北工业大学国家外专局/教育部细胞调控与分子药物“教育部细胞引智基地” 武汉 430068
3 四川成都海关动植物与食品检验检疫处 成都 610041
Advances in the Regulation of Receptor Tyrosine Kinase on Autophagy
DONG Xue-ying1,2,LIANG Kai1,2,YE Ke-ying3,ZHOU Ce-fan1,2,**(),TANG Jing-feng1,2,**()
1 School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
2 HBUT National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
3 Animal, Plant and Food Inspection and Quarantine Office, Chengdu Customs, Sichuan, Chengdu 610041, China
 全文: PDF(445 KB)   HTML
摘要:

自噬是真核生物进化上保守的溶酶体降解的生物学过程,在维护细胞内的稳态、消除有害组分等方面起到了重要作用。受体酪氨酸激酶家族(receptor tyrosine kinase,RTKs)是一类激酶蛋白,在正常细胞和癌症细胞的运动和侵袭中起着重要作用。RTKs蛋白既能促进自噬,也能抑制自噬。研究显示,RTKs能够在肿瘤和相关疾病中发挥自噬作用,比如表皮生长因子受体(epidermal growth factor receptor,EGFR)可以抑制自噬,从而促进肿瘤生长、增殖;还能通过RTK/Ras/ERK信号通路诱导自噬,进而参与诸如细胞免疫反应之类的相关疾病。主要综述了RTKs对自噬的调控作用和相关研究成果,为靶点靶向疗法的理论依据提供了基础。

关键词: 自噬受体酪氨酸激酶家族癌症退行性疾病耐药    
Abstract:

Autophagy is a very conservative biological process of lysosomal degradation in eukaryotic evolution, which plays an important role in maintaining cell homeostasis and eliminating harmful components. Receptor tyrosine kinases (RTKs) are a class of kinase proteins that play an important role in the movement and invasion of normal cells and cancer cells. RTKs protein can not only promote autophagy, but also inhibit autophagy. Studies have shown that RTKs can play a regulatory role in tumors and related diseases through autophagy. For example, epidermal growth factor receptor (EGFR) can inhibit autophagy, thereby promoting tumor growth and proliferation; it can also pass RTK/Ras/ERK signaling pathways to induce autophagy, which in turn participates in related diseases such as cellular immune responses. The regulatory effects of RTKs on autophagy and related research results, which provide a basis for the theoretical basis of target targeted therapy were reviewed.

Key words: Autophagy    Receptor tyrosine kinase family    Cancer    Degenerative diseases    Resistance
收稿日期: 2020-12-23 出版日期: 2021-06-01
ZTFLH:  Q814  
基金资助: * 国家自然科学基金面上项目(32070726)
通讯作者: 周策凡,唐景峰     E-mail: cefan@whu.edu.com;tangjingfeng@hbut.edu.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
董雪迎
梁凯
叶克应
周策凡
唐景峰

引用本文:

董雪迎,梁凯,叶克应,周策凡,唐景峰. 受体酪氨酸激酶对自噬的调控及其研究进展*[J]. 中国生物工程杂志, 2021, 41(5): 72-78.

DONG Xue-ying,LIANG Kai,YE Ke-ying,ZHOU Ce-fan,TANG Jing-feng. Advances in the Regulation of Receptor Tyrosine Kinase on Autophagy. China Biotechnology, 2021, 41(5): 72-78.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2012041        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I5/72

RTKs 与自噬关系及其机制 相关疾病 生理影响及其研究进展
EphB2 异位表达时的自磷酸化和侵袭功能来促进自噬 胃癌、结肠癌、宫颈癌等 降低肿瘤细胞侵袭性,与神经性疾病具有相关性
TrkA ROS积累促进自噬 神经退行性疾病等 与自噬相关,但通过自噬对肿瘤的影响研究较少
AXL 与配体相互作用,自磷酸化诱导自噬 乳腺癌、肺癌、脑肿瘤等 调节癌症发生、发展
EGFR EGFR磷酸化,抑制Beclin1,抑制自噬 肺癌、胰腺癌、头颈癌等 通过自噬促进肿瘤生长,但对其抑制剂耐药研究较少
VEGF VEGF导致相关FOXO转录因子缺乏来抑制自噬 结直肠癌、心血管疾病等 可促进肿瘤血管生成来促进肿瘤扩散
FGFR1 FGFR1磷酸化或二聚化抑制自噬 乳腺癌、前列腺癌、肺鳞癌等 可促进癌症发生,其抑制剂已广泛应用于临床
表1  RTKs对自噬调控机制及其研究进展
[1] Ho C J, Gorski S M. Molecular mechanisms underlying autophagy-mediated treatment resistance in cancer. Cancers, 2019,11(11):1775.
doi: 10.3390/cancers11111775
[2] Noda N N, Fujioka Y. Atg1 family kinases in autophagy initiation. Cellular and Molecular Life Sciences, 2015,72(16):3083-3096.
doi: 10.1007/s00018-015-1917-z
[3] Amaya C, Fader C M, Colombo M I. Autophagy and proteins involved in vesicular trafficking. FEBS Letters, 2015,589(22):3343-3353.
doi: 10.1016/j.febslet.2015.09.021
[4] Itakura E, Mizushima N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy, 2010,6(6):764-776.
pmid: 20639694
[5] Xie Z P, Nair U, Klionsky D J. Atg8 controls phagophore expansion during autophagosome formation. Molecular Biology of the Cell, 2008,19(8):3290-3298.
doi: 10.1091/mbc.e07-12-1292
[6] Reggiori F, Tooze S A. Autophagy regulation through Atg9 traffic. Journal of Cell Biology, 2012,198(2):151-153.
[7] Lemmon M A, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell, 2010,141(7):1117-1134.
doi: 10.1016/j.cell.2010.06.011 pmid: 20602996
[8] Trenker R, Jura N. Receptor tyrosine kinase activation: From the ligand perspective. Current Opinion in Cell Biology, 2020,63:174-185.
doi: 10.1016/j.ceb.2020.01.016
[9] Fraser J, Cabodevilla A G, Simpson J, et al. Interplay of autophagy, receptor tyrosine kinase signalling and endocytic trafficking. Essays in Biochemistry, 2017,61(6):597-607.
doi: 10.1042/EBC20170091 pmid: 29233871
[10] Lampada A, Hochhauser D, Salomoni P. Autophagy and receptor tyrosine kinase signalling: a mTORC2 matter. Cell Cycle, 2017,16(20):1855-1856.
doi: 10.1080/15384101.2017.1372548
[11] Chukkapalli S, Amessou M, Dilly A K, et al. Role of the EphB2 receptor in autophagy, apoptosis and invasion in human breast cancer cells. Experimental Cell Research, 2014,320(2):233-246.
doi: 10.1016/j.yexcr.2013.10.022 pmid: 24211352
[12] Kandouz M, Haidara K, Zhao J, et al. The EphB2 tumor suppressor induces autophagic cell death via concomitant activation of the ERK1/2 and PI3K pathways. Cell Cycle, 2010,9(2):398-407.
doi: 10.4161/cc.9.2.10505
[13] Tanabe H, Kuribayashi K, Tsuji N, et al. Sesamin induces autophagy in colon cancer cells by reducing tyrosine phosphorylation of EphA1 and EphB2. International Journal of Oncology, 2011,39(1):33-40.
[14] Zhong S Z, Pei D, Shi L, et al. Ephrin-B2 inhibits Aβ25-35-induced apoptosis by alleviating endoplasmic reticulum stress and promoting autophagy in HT22 cells. Neuroscience Letters, 2019,704:50-56.
doi: 10.1016/j.neulet.2019.03.028
[15] Singh R, Karri D, Shen H, et al. TRAF4-mediated ubiquitination of NGF receptor TrkA regulates prostate cancer metastasis. The Journal of Clinical Investigation, 2018,128(7):3129-3143.
doi: 10.1172/JCI96060
[16] Molloy N H, Read D E, Gorman A M. Nerve growth factor in cancer cell death and survival. Cancers, 2011,3(1):510-530.
doi: 10.3390/cancers3010510 pmid: 24212627
[17] Dadakhujaev S, Jung E J, Noh H S, et al. Interplay between autophagy and apoptosis in TrkA-induced cell death. Autophagy, 2009,5(1):103-105.
doi: 10.4161/auto.5.1.7276
[18] Dadakhujaev S, Noh H S, Jung E J, et al. The reduced catalase expression in TrkA-induced cells leads to autophagic cell death via ROS accumulation. Experimental Cell Research, 2008,314(17):3094-3106.
doi: 10.1016/j.yexcr.2008.08.013
[19] Koorstra J B M, Karikari C, Feldmann G, et al. The Axl receptor tyrosine kinase confers an adverse prognostic influence in pancreatic cancer and represents a new therapeutic target. Cancer Biology & Therapy, 2009,8(7):618-626.
[20] Colavito S A. AXL as a target in breast cancer therapy. Journal of Oncology, 2020,2020:5291952.
[21] Neubauer A, O’Bryan J P, Fiebeler A, et al. Axl, a novel receptor tyrosine kinase isolated from chronic myelogenous leukemia. Seminars in Hematology, 1993,30(3 Suppl 3):34.
[22] Paccez J D, Vogelsang M, Parker M I, et al. The receptor tyrosine kinase Axl in cancer: biological functions and therapeutic implications. International Journal of Cancer, 2014,134(5):1024-1033.
doi: 10.1002/ijc.v134.5
[23] Holland S J, Pan A, Franci C, et al. R428, a selective small molecule inhibitor of Axl kinase, blocks tumor spread and prolongs survival in models of metastatic breast cancer. Cancer Research, 2010,70(4):1544-1554.
doi: 10.1158/0008-5472.CAN-09-2997 pmid: 20145120
[24] Vajkoczy P, Knyazev P, Kunkel A, et al. Dominant-negative inhibition of the Axl receptor tyrosine kinase suppresses brain tumor cell growth and invasion and prolongs survival. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(15):5799-5804.
[25] Han J, Bae J, Choi C Y, et al. Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice. Autophagy, 2016,12(12):2326-2343.
doi: 10.1080/15548627.2016.1235124
[26] Lee C H, Chun T. Anti-inflammatory role of TAM family of receptor tyrosine kinases via modulating macrophage function. Molecules and Cells, 2019,42(1):1-7.
[27] Han W D, Pan H M, Chen Y, et al. EGFR tyrosine kinase inhibitors activate autophagy as a cytoprotective response in human lung cancer cells. PLoS One, 2011,6(6):e18691.
doi: 10.1371/journal.pone.0018691
[28] Wei Y J, Zou Z J, Becker N, et al. EGFR-mediated beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell, 2013,154(6):1269-1284.
doi: 10.1016/j.cell.2013.08.015
[29] So K S, Kim C H, Rho J K, et al. Autophagosome-mediated EGFR down-regulation induced by the CK2 inhibitor enhances the efficacy of EGFR-TKI on EGFR-mutant lung cancer cells with resistance by T790M. PLoS One, 2014,9(12):e114000.
doi: 10.1371/journal.pone.0114000
[30] Wang R C, Wei Y, An Z, et al. Akt-mediated regulation of autophagy and tumorigenesis through beclin 1 phosphorylation. Science, 2012,338(6109):956-959.
doi: 10.1126/science.1225967
[31] Kwon Y, Kim M, Jung H S, et al. Targeting autophagy for overcoming resistance to anti-EGFR treatments. Cancers, 2019,11(9):1374.
doi: 10.3390/cancers11091374
[32] Domigan C K, Warren C M, Antanesian V, et al. Autocrine VEGF maintains endothelial survival through regulation of metabolism and autophagy. Journal of Cell Science, 2015,128(12):2236-2248.
doi: 10.1242/jcs.163774
[33] Lee S, Chen T T, Barber C L, et al. Autocrine VEGF signaling is required for vascular homeostasis. Cell, 2007,130(4):691-703.
doi: 10.1016/j.cell.2007.06.054
[34] Warr M R, Binnewies M, Flach J, et al. FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature, 2013,494(7437):323-327.
doi: 10.1038/nature11895
[35] Spengler K, Kryeziu N, Groβe S, et al. VEGF triggers transient induction of autophagy in endothelial cells via AMPKα1. Cells, 2020,9(3):687.
doi: 10.3390/cells9030687
[36] Chen C H, Liu Y M, Pan S L, et al. Trichlorobenzene-substituted azaaryl compounds as novel FGFR inhibitors exhibiting potent antitumor activity in bladder cancer cells in vitro and in vivo. Oncotarget, 2016,7(18):26374-26387.
doi: 10.18632/oncotarget.v7i18
[37] Dieci M V, Arnedos M, Andre F, et al. Fibroblast growth factor receptor inhibitors as a cancer treatment: from a biologic rationale to medical perspectives. Cancer Discovery, 2013,3(3):264-279.
doi: 10.1158/2159-8290.CD-12-0362
[38] Du Z F, Lovly C M. Mechanisms of receptor tyrosine kinase activation in cancer. Molecular Cancer, 2018,17(1):1-13.
doi: 10.1186/s12943-017-0753-1
[39] Lampada A, O’Prey J, Szabadkai G, et al. mTORC1-independent autophagy regulates receptor tyrosine kinase phosphorylation in colorectal cancer cells via an mTORC2-mediated mechanism. Cell Death & Differentiation, 2017,24(6):1045-1062.
[40] Wu M, Zhang P H. EGFR-mediated autophagy in tumourigenesis and therapeutic resistance. Cancer Letters, 2020,469:207-216.
doi: 10.1016/j.canlet.2019.10.030
[41] Zhou C F, Qian X H, Hu M, et al. STYK1 promotes autophagy through enhancing the assembly of autophagy-specific class III phosphatidylinositol 3-kinase complex I. Autophagy, 2020,16(10):1786-1806.
doi: 10.1080/15548627.2019.1687212
[42] Huang Z, Ma N, Xiong Y L, et al. Aberrantly high expression of NOK/STYK1 is tightly associated with the activation of the AKT/GSK3β/N-cadherin pathway in non-small cell lung cancer. OncoTargets and Therapy, 2019,12:10299-10309.
doi: 10.2147/OTT.S210014 pmid: 31819514
[43] Meng X R, Wang H J, Zhao J Z, et al. Apatinib inhibits cell proliferation and induces autophagy in human papillary thyroid carcinoma via the PI3K/Akt/mTOR signaling pathway. Frontiers in Oncology, 2020,10:217.
doi: 10.3389/fonc.2020.00217
[44] Tao J Y, Sun D T, Hou H L. Role of YES1 amplification in EGFR mutation-positive non-small cell lung cancer: Primary resistance to afatinib in a patient. Thoracic Cancer, 2020,11(9):2736-2739.
doi: 10.1111/tca.v11.9
[45] Curry D W, Stutz B, Andrews Z B, et al. Targeting AMPK signaling as a neuroprotective strategy in Parkinson’s disease. Journal of Parkinson’s Disease, 2018,8(2):161-181.
[46] Vernizzi L, Paiardi C, Licata G, et al. Glutamine synthetase 1 increases autophagy lysosomal degradation of mutant huntingtin aggregates in neurons, ameliorating motility in a Drosophila model for Huntington’s disease. Cells, 2020,9(1):196.
doi: 10.3390/cells9010196
[47] Forloni G, Balducci C. Alzheimer’s disease, oligomers, and inflammation. Journal of Alzheimer’s Disease, 2018,62(3):1261-1276.
[48] Sun B L, Li W W, Zhu C, et al. Clinical research on Alzheimer’s disease: progress and perspectives. Neuroscience Bulletin, 2018,34(6):1111-1118.
doi: 10.1007/s12264-018-0249-z
[49] Zou L, Wang Z, Shen L, et al. Receptor tyrosine kinases positively regulate BACE activity and Amyloid-beta production through enhancing BACE internalization. Cell Research, 2007,17(5):389-401.
doi: 10.1038/cr.2007.5
[50] Frisardi V, Santamato A, Cheeran B. Parkinson’s disease: new insights into pathophysiology and rehabilitative approaches. Parkinson’s Disease, 2016,2016:1-2.
[51] Chittoor-Vinod V G, Villalobos-Cantor S, Roshak H, et al. Dietary amino acids impact LRRK2-induced neurodegeneration in Parkinson’s disease models. The Journal of Neuroscience, 2020,40(32):6234-6249.
doi: 10.1523/JNEUROSCI.2809-19.2020
[52] Valionyte E, Yang Y, Roberts S L, et al. Lowering mutant huntingtin levels and toxicity: autophagy-endolysosome pathways in Huntington’s disease. Journal of Molecular Biology, 2020,432(8):2673-2691.
doi: S0022-2836(19)30677-1 pmid: 31786267
[1] 李潇瑾,李艳萌,李振坤,徐安健,杨晓曦,黄坚. 基于转录组测序探究ATP7B基因缺陷小鼠铜累积诱导肝细胞自噬的相关机制*[J]. 中国生物工程杂志, 2021, 41(9): 10-19.
[2] 杨万斌,徐燕,卓士铉,王心怡,李雅静,郭一凡,张正光,郭园园. 长链非编码RNA相关表观遗传修饰在癌症中的进展*[J]. 中国生物工程杂志, 2021, 41(8): 59-66.
[3] 蔡润泽,王正波,陈永昌. Mecp2影响Rett综合征中代谢功能的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 89-97.
[4] 韩雪怡,李一帆,陆玥达,熊国良,喻长远. 具有自噬抑制作用的卟啉金属有机框架的制备及其光动力癌症治疗的研究*[J]. 中国生物工程杂志, 2021, 41(11): 48-54.
[5] 唐德平,邢梦洁,宋文涛,姚慧慧,毛爱红. microRNA治疗在癌症及其他疾病中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 64-73.
[6] 张晨阳,黑常春,袁仕林,周玉佳,曹美玲,秦亦欣,杨笑. SIRT3抑制线粒体自噬并减轻高糖加重的神经元缺氧再灌注损伤*[J]. 中国生物工程杂志, 2021, 41(11): 1-13.
[7] 曾祥意,潘杰. 自噬调控白色脂肪细胞棕色化的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 63-73.
[8] 戴奇男,张景红. 肿瘤多药耐药与自噬、DNA修复和肿瘤干细胞相关的分子机制研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 69-77.
[9] 胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.
[10] 赵建民,张思源. 耐药菌感染的噬菌体治疗专利技术[J]. 中国生物工程杂志, 2020, 40(10): 104-111.
[11] 朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.
[12] 张潘红,李莲莲,张秀美,崔家骏,姜银杰. microRNA对肺癌化疗耐药性影响的研究进展 *[J]. 中国生物工程杂志, 2019, 39(7): 79-84.
[13] 杨晓燕,毛景东,李树森,张新颖,杜立银. 细胞自噬对中性粒细胞功能调节的研究进展 *[J]. 中国生物工程杂志, 2019, 39(6): 84-90.
[14] 洪丹彤,张帆,王淑娥,王红霞,刘昆梅,徐广贤,霍正浩,郭乐. miR-17-5p靶向自噬相关蛋白ATG7调控巨噬细胞抗结核分枝杆菌感染作用的研究 *[J]. 中国生物工程杂志, 2019, 39(6): 1-8.
[15] 刘艳,戴鹏,朱运峰. 外泌体与自噬体相互关系研究进展 *[J]. 中国生物工程杂志, 2019, 39(6): 78-83.