Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (9): 10-19    DOI: 10.13523/j.cb.2103052
研究报告     
基于转录组测序探究ATP7B基因缺陷小鼠铜累积诱导肝细胞自噬的相关机制*
李潇瑾,李艳萌,李振坤,徐安健,杨晓曦,黄坚()
首都医科大学附属北京友谊医院科研实验中心 北京市临床医学研究所 北京 100050
The Mechanism of Copper Accumulation Induced Autophagy in Hepatocytes of ATP7B-deficient Mice Based on RNA-sequencing
LI Xiao-jin,LI Yan-meng,LI Zhen-kun,XU An-jian,YANG Xiao-xi,HUANG Jian()
Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing Clinical Medicine Institute, Beijing 100050, China
 全文: PDF(1401 KB)   HTML
摘要:

目的:分析ATP7B基因缺陷(Wilson's disease,WD)小鼠肝脏组织中自噬相关基因的表达和自噬相关蛋白的相互作用方式,探讨铜累积诱导肝内自噬活化的可能机制。方法:对4周龄和12周龄WD小鼠肝组织进行铜含量检测和转录组测序,对差异基因进行GO和KEGG富集分析,筛选自噬相关差异基因做qRT-PCR和Western blot验证,采用GeneMANIA数据库构建自噬相关差异蛋白的互作网络(PPI)并进行功能注释分析,抑制自噬相关蛋白的表达分析其对自噬的影响。结果:与野生型小鼠相比,WD小鼠肝铜含量显著升高,铜累积导致基因表达模式改变;基于GO数据库统计自噬相关差异基因数目,4周龄和12周龄分别有8个、51个,基于KEGG数据库统计,4周龄和12周龄分别有5个、19个;筛选Ulk1Ddit4Plk3等9个基因进行qRT-PCR,定量结果与测序结果表达趋势基本一致;其编码的蛋白质通过共表达、共定位等方式互相作用;Western blot结果显示铜累积导致Ulk1、Plk3、Park2蛋白表达显著增加和细胞自噬发生,抑制Ulk1、Plk3、Park2的蛋白质表达可显著下调细胞自噬水平。结论:WD不同阶段的铜累积可调节肝脏多个自噬相关基因的表达,通过其编码的自噬相关蛋白的互相作用共同诱导肝脏自噬活化以缓解肝损伤。

关键词: ATP7B威尔逊病肝豆状核变性铜累积自噬    
Abstract:

Objective:To investigate the expression of autophagy-related genes and the interaction of autophagy-related proteins in liver tissues of ATP7B-deficient (WD) mice, and to explore the possible mechanism of copper accumulation induced autophagy activation in liver.Methods:The liver copper content of 4 weeks and 12 weeks of WD mice was detected. RNA-sequencing of liver tissues was conducted, and the GO and KEGG pathways of differentially expressed genes were analyzed by bioinformatics. The expression of autophagy-related differentially expressed genes was detected by qRT-PCR and Western blot. GeneMANIA database was used to construct the protein-protein interaction network (PPI) which was related to these autophagy-related proteins, and functional annotation was carried out to analyze its autophagy-related biological function and protein interactions. The expression of autophagy-related proteins was inhibited to analyze its effect on autophagy.Results:Compared with wild-type mice, liver copper content of WD mice was significantly increased, and the copper accumulation led to changes in gene expression pattern. According to the GO database, the number of autophagy-related differential genes in WD mice was 8 at 4 weeks and 51 at 12 weeks. According to KEGG database, the number of autophagy-related differential genes was 5 at 4 weeks and 19 at 12 weeks, respectively. Nine genes, including Ulk1, Ddit4 and Plk3, were screened for qRT-PCR, and the quantitative results was basically consistent with the sequencing results. These autophagy-related proteins interact with each other through co-expression and co-localization. Western blot results showed that copper accumulation significantly increased the protein expressions of Ulk1, Plk3 and Park2, and resulted in autophagy. Inhibition of Ulk1, Plk3 and Park2 expression significantly down-regulated the level of autophagy.Conclusion:Copper accumulation at different stages of WD can regulate the expression of several autophagy-related genes in the liver, and the liver autophagy activation was induced by the interaction of autophagy-related proteins which could alleviate liver injury of WD.

Key words: ATP7B    Wilson's disease    Hepatolenticular degeneration    Copper accumulation    Autophagy
收稿日期: 2021-03-21 出版日期: 2021-09-30
ZTFLH:  Q812  
基金资助: * 国家自然科学基金(81602032);北京市优秀人才项目(2016000021469G224)
通讯作者: 黄坚     E-mail: huangj1966@hotmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李潇瑾
李艳萌
李振坤
徐安健
杨晓曦
黄坚

引用本文:

李潇瑾,李艳萌,李振坤,徐安健,杨晓曦,黄坚. 基于转录组测序探究ATP7B基因缺陷小鼠铜累积诱导肝细胞自噬的相关机制*[J]. 中国生物工程杂志, 2021, 41(9): 10-19.

LI Xiao-jin,LI Yan-meng,LI Zhen-kun,XU An-jian,YANG Xiao-xi,HUANG Jian. The Mechanism of Copper Accumulation Induced Autophagy in Hepatocytes of ATP7B-deficient Mice Based on RNA-sequencing. China Biotechnology, 2021, 41(9): 10-19.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2103052        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I9/10

基因 引物序列
Ulk1 F: GCATCGAGCAAAACCTGCAA
R: GGGGAGAAGGTGTGTAGGGA
Ddit4 F: CTGGCATACAGTGAGCCGTG
R: AGGGTCAACTGAAAGGTGGG
Mtmr4 F: AAGTTTGGAGACCGCTGTGG
R: GATGCAGGACCAGAAATGCTTC
Rnf152 F: CTGCCCATCTCTAAGGAGCG
R: ATGTGGAGCTCTTCACCACG
Park2 F: GGGATTCAGAAGCAGCCAGA
R: GAGGGTTGCTTGTTTGCAGG
Npc1 F: GCCACAGAAGGCGGTACTTTG
R: GAACATGCGCCTCAGACAGT
Plk3 F: TCCTGCTTGGCTCCTGTAGTT
R: GGCATGAAGGCCACACAGTT
Prkaa2 F: ACTCTGCTGATGCACATGCT
R: TCGTAGGAGGGGTCTTCAGG
Atg16l2 F: ACAGGTGTTCAGGGCAGATG
R: CATTAACAGCAGTGCAGTGGG
GAPDH F: TGGCCTTCCGTGTTCCTAC
R: GAGTTGCTGTTGAAGTCGCA
表1  用于qRT-PCR检测的基因引物
图1  ATP7B基因敲除对小鼠肝铜含量的影响
图2  差异表达基因的聚类热图
图3  自噬相关差异表达基因的维恩图
项目 基因 4周 12周
log2FC P log2FC P
KD vs WT Ulk1 1.14 2.13×10-8 2.64×10-2 0.91
Ddit4 -1.64 7.40×10-4 2.10 1.47×10-21
Mtmr4 -1.18 1.68×10-4 -1.03 4.91×10-8
Rnf152 1.13 3.68×10-6 -2.53 3.00×10-10
Park2 1.02 2.97×10-2 0.68 4.01×10-2
Npc1 1.30 2.71×10-6 -0.61 9.42×10-4
Plk3 2.37×10-2 0.95 1.10 1.00×10-3
Prkaa2 0.19 0.30 -1.53 5.36×10-14
Atg16l2 -0.25 0.41 1.17 1.83×10-3
表2  自噬相关差异表达基因测序结果
图4  自噬相关差异基因的qRT-PCR验证
图5  自噬相关差异蛋白的PPI网络与功能注释
图6  过量铜处理诱导小鼠肝癌细胞内自噬相关差异蛋白的表达和自噬活化
图7  抑制自噬相关蛋白Ulk1、Plk3、Park2的表达对细胞自噬的影响
[1] Ala A, Walker A P, Ashkan K, et al. Wilson's disease. The Lancet, 2007, 369(9559):397-408.
doi: 10.1016/S0140-6736(07)60196-2
[2] Lv T, Li X J, Zhang W, et al. Recent advance in the molecular genetics of Wilson disease and hereditary hemochromatosis. European Journal of Medical Genetics, 2016, 59(10):532-539.
doi: 10.1016/j.ejmg.2016.08.011
[3] Li X J, Zhang W, Zhou D H, et al. Complex ATP7B mutation patterns in Wilson disease and evaluation of a yeast model for functional analysis of variants. Human Mutation, 2019, 40(5):552-565.
doi: 10.1002/humu.23714
[4] Patil M, Sheth K A, Krishnamurthy A C, et al. A review and current perspective on Wilson disease. Journal of Clinical and Experimental Hepatology, 2013, 3(4):321-336.
doi: 10.1016/j.jceh.2013.06.002
[5] Mizushima N. Autophagy: process and function. Genes & Development, 2007, 21(22):2861-2873.
doi: 10.1101/gad.1599207
[6] Meijer A J, Codogno P. Regulation and role of autophagy in mammalian cells. The International Journal of Biochemistry & Cell Biology, 2004, 36(12):2445-2462.
doi: 10.1016/j.biocel.2004.02.002
[7] Polishchuk E V, Merolla A, Lichtmannegger J, et al. Activation of autophagy, observed in liver tissues from patients with Wilson disease and from ATP7B-deficient animals, protects hepatocytes from copper-induced apoptosis. Gastroenterology, 2019, 156(4): 1173-1189.e5.
doi: S0016-5085(18)35280-6 pmid: 30452922
[8] Cousins R J. Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiological Reviews, 1985, 65(2):238-309.
pmid: 3885271
[9] Zhang S S, Noordin M M, Rahman S O, et al. Effects of copper overload on hepatic lipid peroxidation and antioxidant defense in rats. Veterinary and Human Toxicology, 2000, 42(5):261-264.
pmid: 11003114
[10] Liu H, Deng H D, Cui H M, et al. Copper induces hepatocyte autophagy via the mammalian targets of the rapamycin signaling pathway in mice. Ecotoxicology and Environmental Safety, 2021, 208:111656.
doi: 10.1016/j.ecoenv.2020.111656
[11] Glick D, Barth S, MacLeod K F. Autophagy: cellular and molecular mechanisms. The Journal of Pathology, 2010, 221(1):3-12.
doi: 10.1002/path.2697
[12] Hosokawa N, Hara T, Kaizuka T, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Molecular Biology of the Cell, 2009, 20(7):1981-1991.
doi: 10.1091/mbc.E08-12-1248 pmid: 19211835
[13] Kim J, Kundu M, Viollet B, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biology, 2011, 13(2):132-141.
doi: 10.1038/ncb2152
[14] McAlpine F, Williamson L E, Tooze S A, et al. Regulation of nutrient-sensitive autophagy by uncoordinated 51-like kinases 1 and 2. Autophagy, 2013, 9(3):361-373.
doi: 10.4161/auto.23066 pmid: 23291478
[15] Dove K K, Klevit R E. RING-between-RING E3 ligases: emerging themes amid the variations. Journal of Molecular Biology, 2017, 429(22):3363-3375.
doi: 10.1016/j.jmb.2017.08.008
[16] Jia L H, Liu Z B, Sun L J, et al. Acrolein, a toxicant in cigarette smoke, causes oxidative damage and mitochondrial dysfunction in RPE cells: protection by (R)-alpha-lipoic acid. Investigative Ophthalmology & Visual Science, 2007, 48(1):339-348.
[17] Wang H, Tian C, Sun J, et al. Overexpression of PLK3 mediates the degradation of abnormal prion proteins dependent on chaperone-mediated autophagy. Molecular Neurobiology, 2017, 54(6):4401-4413.
doi: 10.1007/s12035-016-9985-0 pmid: 27344333
[18] Castellano B M, Thelen A M, Moldavski O, et al. Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex. Science, 2017, 355(6331):1306-1311.
doi: 10.1126/science.aag1417 pmid: 28336668
[19] 居晨玉. miR-1000在对虾抗病毒免疫中的作用及miR-71促进胃癌细胞自噬的机制. 杭州: 浙江大学, 2016.
Ju C Y. The role of miR-1000 in shrimp antiviral immunity and the mechanism of miR-71 promoting autophagy of gastric cancer cells. Hangzhou: Zhejiang University, 2016.
[20] Wible D J, Chao H P, Tang D, et al. ATG5 cancer mutations and alternative mRNA splicing reveal a conjugation switch that regulates ATG12-ATG5-ATG16L1 complex assembly and autophagy. Cell Discovery, 2019, 5:42.
doi: 10.1038/s41421-019-0110-1
[21] Deng L, Jiang C, Chen L, et al. The ubiquitination of RagA GTPase by RNF152 negatively regulates mTORC1 activation. Molecular Cell, 2015, 58(5):804-818.
doi: 10.1016/j.molcel.2015.03.033 pmid: 25936802
[22] Corradetti M N, Inoki K, Guan K L. The stress-inducted proteins RTP801 and RTP801L are negative regulators of the mammalian target of rapamycin pathway. Journal of Biological Chemistry, 2005, 280(11):9769-9772.
pmid: 15632201
[1] 董雪迎,梁凯,叶克应,周策凡,唐景峰. 受体酪氨酸激酶对自噬的调控及其研究进展*[J]. 中国生物工程杂志, 2021, 41(5): 72-78.
[2] 蔡润泽,王正波,陈永昌. Mecp2影响Rett综合征中代谢功能的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 89-97.
[3] 韩雪怡,李一帆,陆玥达,熊国良,喻长远. 具有自噬抑制作用的卟啉金属有机框架的制备及其光动力癌症治疗的研究*[J]. 中国生物工程杂志, 2021, 41(11): 48-54.
[4] 张晨阳,黑常春,袁仕林,周玉佳,曹美玲,秦亦欣,杨笑. SIRT3抑制线粒体自噬并减轻高糖加重的神经元缺氧再灌注损伤*[J]. 中国生物工程杂志, 2021, 41(11): 1-13.
[5] 曾祥意,潘杰. 自噬调控白色脂肪细胞棕色化的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 63-73.
[6] 戴奇男,张景红. 肿瘤多药耐药与自噬、DNA修复和肿瘤干细胞相关的分子机制研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 69-77.
[7] 胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.
[8] 朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.
[9] 杨晓燕,毛景东,李树森,张新颖,杜立银. 细胞自噬对中性粒细胞功能调节的研究进展 *[J]. 中国生物工程杂志, 2019, 39(6): 84-90.
[10] 洪丹彤,张帆,王淑娥,王红霞,刘昆梅,徐广贤,霍正浩,郭乐. miR-17-5p靶向自噬相关蛋白ATG7调控巨噬细胞抗结核分枝杆菌感染作用的研究 *[J]. 中国生物工程杂志, 2019, 39(6): 1-8.
[11] 刘艳,戴鹏,朱运峰. 外泌体与自噬体相互关系研究进展 *[J]. 中国生物工程杂志, 2019, 39(6): 78-83.
[12] 马占兵,党洁,杨继辉,霍正浩,徐广贤. 基于慢病毒系统的双荧光标记多功能自噬流监测系统建立与应用 *[J]. 中国生物工程杂志, 2019, 39(5): 88-95.
[13] 汪路,杨丽媛,唐雨婷,陶瑶,雷力,敬一佩,蒋雪坷,张伶. 干扰PKM2对人白血病细胞增殖和凋亡的影响及潜在机制 *[J]. 中国生物工程杂志, 2019, 39(3): 13-20.
[14] 沈冰蕾,王宇轩,韩硕,李熹,杨卓妮娜,邹紫雯,刘娟. 非编码RNA在细胞自噬中的研究进展 *[J]. 中国生物工程杂志, 2019, 39(12): 56-63.
[15] 詹蕙璐,白莹,庄严,孟娟,赵海洋. 纳米材料诱导自噬引发保护作用的研究进展[J]. 中国生物工程杂志, 2019, 39(12): 64-72.